Data Structures | |
struct | BASE_LIBRARY_JUMP_BUFFER |
union | IA32_FLAGS16 |
union | IA32_EFLAGS32 |
union | IA32_CR0 |
union | IA32_CR4 |
union | IA32_SEGMENT_DESCRIPTOR |
struct | IA32_DESCRIPTOR |
union | IA32_IDT_GATE_DESCRIPTOR |
struct | IA32_FX_BUFFER |
struct | IA32_BYTE_REGS |
struct | IA32_WORD_REGS |
struct | IA32_DWORD_REGS |
union | IA32_REGISTER_SET |
struct | THUNK_CONTEXT |
Defines | |
#define | BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 4 [IA32] |
#define | BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 0x10 [IPF] |
#define | BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 8 [x64, EBC] |
#define | BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 8 [x64, EBC] |
#define | BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 4 [IA32] |
#define | INITIALIZE_LIST_HEAD_VARIABLE(ListHead) {&(ListHead), &(ListHead)} |
#define | IPF_CONTROL_REGISTER_DCR 0 |
#define | IPF_CONTROL_REGISTER_ITM 1 |
#define | IPF_CONTROL_REGISTER_IVA 2 |
#define | IPF_CONTROL_REGISTER_PTA 8 |
#define | IPF_CONTROL_REGISTER_IPSR 16 |
#define | IPF_CONTROL_REGISTER_ISR 17 |
#define | IPF_CONTROL_REGISTER_IIP 19 |
#define | IPF_CONTROL_REGISTER_IFA 20 |
#define | IPF_CONTROL_REGISTER_ITIR 21 |
#define | IPF_CONTROL_REGISTER_IIPA 22 |
#define | IPF_CONTROL_REGISTER_IFS 23 |
#define | IPF_CONTROL_REGISTER_IIM 24 |
#define | IPF_CONTROL_REGISTER_IHA 25 |
#define | IPF_CONTROL_REGISTER_LID 64 |
#define | IPF_CONTROL_REGISTER_IVR 65 |
#define | IPF_CONTROL_REGISTER_TPR 66 |
#define | IPF_CONTROL_REGISTER_EOI 67 |
#define | IPF_CONTROL_REGISTER_IRR0 68 |
#define | IPF_CONTROL_REGISTER_IRR1 69 |
#define | IPF_CONTROL_REGISTER_IRR2 70 |
#define | IPF_CONTROL_REGISTER_IRR3 71 |
#define | IPF_CONTROL_REGISTER_ITV 72 |
#define | IPF_CONTROL_REGISTER_PMV 73 |
#define | IPF_CONTROL_REGISTER_CMCV 74 |
#define | IPF_CONTROL_REGISTER_LRR0 80 |
#define | IPF_CONTROL_REGISTER_LRR1 81 |
#define | IPF_APPLICATION_REGISTER_K0 0 |
#define | IPF_APPLICATION_REGISTER_K1 1 |
#define | IPF_APPLICATION_REGISTER_K2 2 |
#define | IPF_APPLICATION_REGISTER_K3 3 |
#define | IPF_APPLICATION_REGISTER_K4 4 |
#define | IPF_APPLICATION_REGISTER_K5 5 |
#define | IPF_APPLICATION_REGISTER_K6 6 |
#define | IPF_APPLICATION_REGISTER_K7 7 |
#define | IPF_APPLICATION_REGISTER_RSC 16 |
#define | IPF_APPLICATION_REGISTER_BSP 17 |
#define | IPF_APPLICATION_REGISTER_BSPSTORE 18 |
#define | IPF_APPLICATION_REGISTER_RNAT 19 |
#define | IPF_APPLICATION_REGISTER_FCR 21 |
#define | IPF_APPLICATION_REGISTER_EFLAG 24 |
#define | IPF_APPLICATION_REGISTER_CSD 25 |
#define | IPF_APPLICATION_REGISTER_SSD 26 |
#define | IPF_APPLICATION_REGISTER_CFLG 27 |
#define | IPF_APPLICATION_REGISTER_FSR 28 |
#define | IPF_APPLICATION_REGISTER_FIR 29 |
#define | IPF_APPLICATION_REGISTER_FDR 30 |
#define | IPF_APPLICATION_REGISTER_CCV 32 |
#define | IPF_APPLICATION_REGISTER_UNAT 36 |
#define | IPF_APPLICATION_REGISTER_FPSR 40 |
#define | IPF_APPLICATION_REGISTER_ITC 44 |
#define | IPF_APPLICATION_REGISTER_PFS 64 |
#define | IPF_APPLICATION_REGISTER_LC 65 |
#define | IPF_APPLICATION_REGISTER_EC 66 |
#define | IA32_IDT_GATE_TYPE_TASK 0x85 |
#define | IA32_IDT_GATE_TYPE_INTERRUPT_16 0x86 |
#define | IA32_IDT_GATE_TYPE_TRAP_16 0x87 |
#define | IA32_IDT_GATE_TYPE_INTERRUPT_32 0x8E |
#define | IA32_IDT_GATE_TYPE_TRAP_32 0x8F |
#define | THUNK_ATTRIBUTE_BIG_REAL_MODE 0x00000001 |
#define | THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 0x00000002 |
#define | THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL 0x00000004 |
Typedefs | |
typedef VOID(EFIAPI * | SWITCH_STACK_ENTRY_POINT )(IN VOID *Context1, IN VOID *Context2) |
Functions | |
UINTN EFIAPI | StrnLenS (IN CONST CHAR16 *String, IN UINTN MaxSize) |
RETURN_STATUS EFIAPI | StrCpyS (OUT CHAR16 *Destination, IN UINTN DestMax, IN CONST CHAR16 *Source) |
RETURN_STATUS EFIAPI | StrnCpyS (OUT CHAR16 *Destination, IN UINTN DestMax, IN CONST CHAR16 *Source, IN UINTN Length) |
RETURN_STATUS EFIAPI | StrCatS (IN OUT CHAR16 *Destination, IN UINTN DestMax, IN CONST CHAR16 *Source) |
RETURN_STATUS EFIAPI | StrnCatS (IN OUT CHAR16 *Destination, IN UINTN DestMax, IN CONST CHAR16 *Source, IN UINTN Length) |
UINTN EFIAPI | AsciiStrnLenS (IN CONST CHAR8 *String, IN UINTN MaxSize) |
RETURN_STATUS EFIAPI | AsciiStrCpyS (OUT CHAR8 *Destination, IN UINTN DestMax, IN CONST CHAR8 *Source) |
RETURN_STATUS EFIAPI | AsciiStrnCpyS (OUT CHAR8 *Destination, IN UINTN DestMax, IN CONST CHAR8 *Source, IN UINTN Length) |
RETURN_STATUS EFIAPI | AsciiStrCatS (IN OUT CHAR8 *Destination, IN UINTN DestMax, IN CONST CHAR8 *Source) |
RETURN_STATUS EFIAPI | AsciiStrnCatS (IN OUT CHAR8 *Destination, IN UINTN DestMax, IN CONST CHAR8 *Source, IN UINTN Length) |
CHAR16 *EFIAPI | StrCpy (OUT CHAR16 *Destination, IN CONST CHAR16 *Source) |
CHAR16 *EFIAPI | StrnCpy (OUT CHAR16 *Destination, IN CONST CHAR16 *Source, IN UINTN Length) |
UINTN EFIAPI | StrLen (IN CONST CHAR16 *String) |
UINTN EFIAPI | StrSize (IN CONST CHAR16 *String) |
INTN EFIAPI | StrCmp (IN CONST CHAR16 *FirstString, IN CONST CHAR16 *SecondString) |
INTN EFIAPI | StrnCmp (IN CONST CHAR16 *FirstString, IN CONST CHAR16 *SecondString, IN UINTN Length) |
CHAR16 *EFIAPI | StrCat (IN OUT CHAR16 *Destination, IN CONST CHAR16 *Source) |
CHAR16 *EFIAPI | StrnCat (IN OUT CHAR16 *Destination, IN CONST CHAR16 *Source, IN UINTN Length) |
CHAR16 *EFIAPI | StrStr (IN CONST CHAR16 *String, IN CONST CHAR16 *SearchString) |
UINTN EFIAPI | StrDecimalToUintn (IN CONST CHAR16 *String) |
UINT64 EFIAPI | StrDecimalToUint64 (IN CONST CHAR16 *String) |
UINTN EFIAPI | StrHexToUintn (IN CONST CHAR16 *String) |
UINT64 EFIAPI | StrHexToUint64 (IN CONST CHAR16 *String) |
CHAR8 *EFIAPI | UnicodeStrToAsciiStr (IN CONST CHAR16 *Source, OUT CHAR8 *Destination) |
CHAR8 *EFIAPI | AsciiStrCpy (OUT CHAR8 *Destination, IN CONST CHAR8 *Source) |
CHAR8 *EFIAPI | AsciiStrnCpy (OUT CHAR8 *Destination, IN CONST CHAR8 *Source, IN UINTN Length) |
UINTN EFIAPI | AsciiStrLen (IN CONST CHAR8 *String) |
UINTN EFIAPI | AsciiStrSize (IN CONST CHAR8 *String) |
INTN EFIAPI | AsciiStrCmp (IN CONST CHAR8 *FirstString, IN CONST CHAR8 *SecondString) |
INTN EFIAPI | AsciiStriCmp (IN CONST CHAR8 *FirstString, IN CONST CHAR8 *SecondString) |
INTN EFIAPI | AsciiStrnCmp (IN CONST CHAR8 *FirstString, IN CONST CHAR8 *SecondString, IN UINTN Length) |
CHAR8 *EFIAPI | AsciiStrCat (IN OUT CHAR8 *Destination, IN CONST CHAR8 *Source) |
CHAR8 *EFIAPI | AsciiStrnCat (IN OUT CHAR8 *Destination, IN CONST CHAR8 *Source, IN UINTN Length) |
CHAR8 *EFIAPI | AsciiStrStr (IN CONST CHAR8 *String, IN CONST CHAR8 *SearchString) |
UINTN EFIAPI | AsciiStrDecimalToUintn (IN CONST CHAR8 *String) |
UINT64 EFIAPI | AsciiStrDecimalToUint64 (IN CONST CHAR8 *String) |
UINTN EFIAPI | AsciiStrHexToUintn (IN CONST CHAR8 *String) |
UINT64 EFIAPI | AsciiStrHexToUint64 (IN CONST CHAR8 *String) |
CHAR16 *EFIAPI | AsciiStrToUnicodeStr (IN CONST CHAR8 *Source, OUT CHAR16 *Destination) |
UINT8 EFIAPI | DecimalToBcd8 (IN UINT8 Value) |
UINT8 EFIAPI | BcdToDecimal8 (IN UINT8 Value) |
BOOLEAN EFIAPI | PathRemoveLastItem (IN OUT CHAR16 *Path) |
CHAR16 *EFIAPI | PathCleanUpDirectories (IN CHAR16 *Path) |
LIST_ENTRY *EFIAPI | InitializeListHead (IN OUT LIST_ENTRY *ListHead) |
LIST_ENTRY *EFIAPI | InsertHeadList (IN OUT LIST_ENTRY *ListHead, IN OUT LIST_ENTRY *Entry) |
LIST_ENTRY *EFIAPI | InsertTailList (IN OUT LIST_ENTRY *ListHead, IN OUT LIST_ENTRY *Entry) |
LIST_ENTRY *EFIAPI | GetFirstNode (IN CONST LIST_ENTRY *List) |
LIST_ENTRY *EFIAPI | GetNextNode (IN CONST LIST_ENTRY *List, IN CONST LIST_ENTRY *Node) |
LIST_ENTRY *EFIAPI | GetPreviousNode (IN CONST LIST_ENTRY *List, IN CONST LIST_ENTRY *Node) |
BOOLEAN EFIAPI | IsListEmpty (IN CONST LIST_ENTRY *ListHead) |
BOOLEAN EFIAPI | IsNull (IN CONST LIST_ENTRY *List, IN CONST LIST_ENTRY *Node) |
BOOLEAN EFIAPI | IsNodeAtEnd (IN CONST LIST_ENTRY *List, IN CONST LIST_ENTRY *Node) |
LIST_ENTRY *EFIAPI | SwapListEntries (IN OUT LIST_ENTRY *FirstEntry, IN OUT LIST_ENTRY *SecondEntry) |
LIST_ENTRY *EFIAPI | RemoveEntryList (IN CONST LIST_ENTRY *Entry) |
UINT64 EFIAPI | LShiftU64 (IN UINT64 Operand, IN UINTN Count) |
UINT64 EFIAPI | RShiftU64 (IN UINT64 Operand, IN UINTN Count) |
UINT64 EFIAPI | ARShiftU64 (IN UINT64 Operand, IN UINTN Count) |
UINT32 EFIAPI | LRotU32 (IN UINT32 Operand, IN UINTN Count) |
UINT32 EFIAPI | RRotU32 (IN UINT32 Operand, IN UINTN Count) |
UINT64 EFIAPI | LRotU64 (IN UINT64 Operand, IN UINTN Count) |
UINT64 EFIAPI | RRotU64 (IN UINT64 Operand, IN UINTN Count) |
INTN EFIAPI | LowBitSet32 (IN UINT32 Operand) |
INTN EFIAPI | LowBitSet64 (IN UINT64 Operand) |
INTN EFIAPI | HighBitSet32 (IN UINT32 Operand) |
INTN EFIAPI | HighBitSet64 (IN UINT64 Operand) |
UINT32 EFIAPI | GetPowerOfTwo32 (IN UINT32 Operand) |
UINT64 EFIAPI | GetPowerOfTwo64 (IN UINT64 Operand) |
UINT16 EFIAPI | SwapBytes16 (IN UINT16 Value) |
UINT32 EFIAPI | SwapBytes32 (IN UINT32 Value) |
UINT64 EFIAPI | SwapBytes64 (IN UINT64 Value) |
UINT64 EFIAPI | MultU64x32 (IN UINT64 Multiplicand, IN UINT32 Multiplier) |
UINT64 EFIAPI | MultU64x64 (IN UINT64 Multiplicand, IN UINT64 Multiplier) |
INT64 EFIAPI | MultS64x64 (IN INT64 Multiplicand, IN INT64 Multiplier) |
UINT64 EFIAPI | DivU64x32 (IN UINT64 Dividend, IN UINT32 Divisor) |
UINT32 EFIAPI | ModU64x32 (IN UINT64 Dividend, IN UINT32 Divisor) |
UINT64 EFIAPI | DivU64x32Remainder (IN UINT64 Dividend, IN UINT32 Divisor, OUT UINT32 *Remainder) |
UINT64 EFIAPI | DivU64x64Remainder (IN UINT64 Dividend, IN UINT64 Divisor, OUT UINT64 *Remainder) |
INT64 EFIAPI | DivS64x64Remainder (IN INT64 Dividend, IN INT64 Divisor, OUT INT64 *Remainder) |
UINT16 EFIAPI | ReadUnaligned16 (IN CONST UINT16 *Buffer) |
UINT16 EFIAPI | WriteUnaligned16 (OUT UINT16 *Buffer, IN UINT16 Value) |
UINT32 EFIAPI | ReadUnaligned24 (IN CONST UINT32 *Buffer) |
UINT32 EFIAPI | WriteUnaligned24 (OUT UINT32 *Buffer, IN UINT32 Value) |
UINT32 EFIAPI | ReadUnaligned32 (IN CONST UINT32 *Buffer) |
UINT32 EFIAPI | WriteUnaligned32 (OUT UINT32 *Buffer, IN UINT32 Value) |
UINT64 EFIAPI | ReadUnaligned64 (IN CONST UINT64 *Buffer) |
UINT64 EFIAPI | WriteUnaligned64 (OUT UINT64 *Buffer, IN UINT64 Value) |
UINT8 EFIAPI | BitFieldRead8 (IN UINT8 Operand, IN UINTN StartBit, IN UINTN EndBit) |
UINT8 EFIAPI | BitFieldWrite8 (IN UINT8 Operand, IN UINTN StartBit, IN UINTN EndBit, IN UINT8 Value) |
UINT8 EFIAPI | BitFieldOr8 (IN UINT8 Operand, IN UINTN StartBit, IN UINTN EndBit, IN UINT8 OrData) |
UINT8 EFIAPI | BitFieldAnd8 (IN UINT8 Operand, IN UINTN StartBit, IN UINTN EndBit, IN UINT8 AndData) |
UINT8 EFIAPI | BitFieldAndThenOr8 (IN UINT8 Operand, IN UINTN StartBit, IN UINTN EndBit, IN UINT8 AndData, IN UINT8 OrData) |
UINT16 EFIAPI | BitFieldRead16 (IN UINT16 Operand, IN UINTN StartBit, IN UINTN EndBit) |
UINT16 EFIAPI | BitFieldWrite16 (IN UINT16 Operand, IN UINTN StartBit, IN UINTN EndBit, IN UINT16 Value) |
UINT16 EFIAPI | BitFieldOr16 (IN UINT16 Operand, IN UINTN StartBit, IN UINTN EndBit, IN UINT16 OrData) |
UINT16 EFIAPI | BitFieldAnd16 (IN UINT16 Operand, IN UINTN StartBit, IN UINTN EndBit, IN UINT16 AndData) |
UINT16 EFIAPI | BitFieldAndThenOr16 (IN UINT16 Operand, IN UINTN StartBit, IN UINTN EndBit, IN UINT16 AndData, IN UINT16 OrData) |
UINT32 EFIAPI | BitFieldRead32 (IN UINT32 Operand, IN UINTN StartBit, IN UINTN EndBit) |
UINT32 EFIAPI | BitFieldWrite32 (IN UINT32 Operand, IN UINTN StartBit, IN UINTN EndBit, IN UINT32 Value) |
UINT32 EFIAPI | BitFieldOr32 (IN UINT32 Operand, IN UINTN StartBit, IN UINTN EndBit, IN UINT32 OrData) |
UINT32 EFIAPI | BitFieldAnd32 (IN UINT32 Operand, IN UINTN StartBit, IN UINTN EndBit, IN UINT32 AndData) |
UINT32 EFIAPI | BitFieldAndThenOr32 (IN UINT32 Operand, IN UINTN StartBit, IN UINTN EndBit, IN UINT32 AndData, IN UINT32 OrData) |
UINT64 EFIAPI | BitFieldRead64 (IN UINT64 Operand, IN UINTN StartBit, IN UINTN EndBit) |
UINT64 EFIAPI | BitFieldWrite64 (IN UINT64 Operand, IN UINTN StartBit, IN UINTN EndBit, IN UINT64 Value) |
UINT64 EFIAPI | BitFieldOr64 (IN UINT64 Operand, IN UINTN StartBit, IN UINTN EndBit, IN UINT64 OrData) |
UINT64 EFIAPI | BitFieldAnd64 (IN UINT64 Operand, IN UINTN StartBit, IN UINTN EndBit, IN UINT64 AndData) |
UINT64 EFIAPI | BitFieldAndThenOr64 (IN UINT64 Operand, IN UINTN StartBit, IN UINTN EndBit, IN UINT64 AndData, IN UINT64 OrData) |
UINT8 EFIAPI | CalculateSum8 (IN CONST UINT8 *Buffer, IN UINTN Length) |
UINT8 EFIAPI | CalculateCheckSum8 (IN CONST UINT8 *Buffer, IN UINTN Length) |
UINT16 EFIAPI | CalculateSum16 (IN CONST UINT16 *Buffer, IN UINTN Length) |
UINT16 EFIAPI | CalculateCheckSum16 (IN CONST UINT16 *Buffer, IN UINTN Length) |
UINT32 EFIAPI | CalculateSum32 (IN CONST UINT32 *Buffer, IN UINTN Length) |
UINT32 EFIAPI | CalculateCheckSum32 (IN CONST UINT32 *Buffer, IN UINTN Length) |
UINT64 EFIAPI | CalculateSum64 (IN CONST UINT64 *Buffer, IN UINTN Length) |
UINT64 EFIAPI | CalculateCheckSum64 (IN CONST UINT64 *Buffer, IN UINTN Length) |
VOID EFIAPI | MemoryFence (VOID) |
UINTN EFIAPI | SetJump (OUT BASE_LIBRARY_JUMP_BUFFER *JumpBuffer) |
VOID EFIAPI | EnableInterrupts (VOID) |
VOID EFIAPI | DisableInterrupts (VOID) |
BOOLEAN EFIAPI | SaveAndDisableInterrupts (VOID) |
VOID EFIAPI | EnableDisableInterrupts (VOID) |
BOOLEAN EFIAPI | GetInterruptState (VOID) |
BOOLEAN EFIAPI | SetInterruptState (IN BOOLEAN InterruptState) |
VOID EFIAPI | CpuPause (VOID) |
VOID EFIAPI | SwitchStack (IN SWITCH_STACK_ENTRY_POINT EntryPoint, IN VOID *Context1, IN VOID *Context2, IN VOID *NewStack,...) |
VOID EFIAPI | CpuBreakpoint (VOID) |
VOID EFIAPI | CpuDeadLoop (VOID) |
VOID *EFIAPI | AsmFlushCacheRange (IN VOID *Address, IN UINTN Length) |
UINT64 EFIAPI | AsmFc (IN UINT64 Address) |
UINT64 EFIAPI | AsmFci (IN UINT64 Address) |
UINT64 EFIAPI | AsmReadCpuid (IN UINT8 Index) |
UINT64 EFIAPI | AsmReadPsr (VOID) |
UINT64 EFIAPI | AsmWritePsr (IN UINT64 Value) |
UINT64 EFIAPI | AsmReadKr0 (VOID) |
UINT64 EFIAPI | AsmReadKr1 (VOID) |
UINT64 EFIAPI | AsmReadKr2 (VOID) |
UINT64 EFIAPI | AsmReadKr3 (VOID) |
UINT64 EFIAPI | AsmReadKr4 (VOID) |
UINT64 EFIAPI | AsmReadKr5 (VOID) |
UINT64 EFIAPI | AsmReadKr6 (VOID) |
UINT64 EFIAPI | AsmReadKr7 (VOID) |
UINT64 EFIAPI | AsmWriteKr0 (IN UINT64 Value) |
UINT64 EFIAPI | AsmWriteKr1 (IN UINT64 Value) |
UINT64 EFIAPI | AsmWriteKr2 (IN UINT64 Value) |
UINT64 EFIAPI | AsmWriteKr3 (IN UINT64 Value) |
UINT64 EFIAPI | AsmWriteKr4 (IN UINT64 Value) |
UINT64 EFIAPI | AsmWriteKr5 (IN UINT64 Value) |
UINT64 EFIAPI | AsmWriteKr6 (IN UINT64 Value) |
UINT64 EFIAPI | AsmWriteKr7 (IN UINT64 Value) |
UINT64 EFIAPI | AsmReadItc (VOID) |
UINT64 EFIAPI | AsmReadItv (VOID) |
UINT64 EFIAPI | AsmReadItm (VOID) |
UINT64 EFIAPI | AsmWriteItc (IN UINT64 Value) |
UINT64 EFIAPI | AsmWriteItm (IN UINT64 Value) |
UINT64 EFIAPI | AsmWriteItv (IN UINT64 Value) |
UINT64 EFIAPI | AsmReadDcr (VOID) |
UINT64 EFIAPI | AsmReadIva (VOID) |
UINT64 EFIAPI | AsmReadPta (VOID) |
UINT64 EFIAPI | AsmWriteDcr (IN UINT64 Value) |
UINT64 EFIAPI | AsmWriteIva (IN UINT64 Value) |
UINT64 EFIAPI | AsmWritePta (IN UINT64 Value) |
UINT64 EFIAPI | AsmReadLid (VOID) |
UINT64 EFIAPI | AsmReadIvr (VOID) |
UINT64 EFIAPI | AsmReadTpr (VOID) |
UINT64 EFIAPI | AsmReadIrr0 (VOID) |
UINT64 EFIAPI | AsmReadIrr1 (VOID) |
UINT64 EFIAPI | AsmReadIrr2 (VOID) |
UINT64 EFIAPI | AsmReadIrr3 (VOID) |
UINT64 EFIAPI | AsmReadPmv (VOID) |
UINT64 EFIAPI | AsmReadCmcv (VOID) |
UINT64 EFIAPI | AsmReadLrr0 (VOID) |
UINT64 EFIAPI | AsmReadLrr1 (VOID) |
UINT64 EFIAPI | AsmWriteLid (IN UINT64 Value) |
UINT64 EFIAPI | AsmWriteTpr (IN UINT64 Value) |
VOID EFIAPI | AsmWriteEoi (VOID) |
UINT64 EFIAPI | AsmWritePmv (IN UINT64 Value) |
UINT64 EFIAPI | AsmWriteCmcv (IN UINT64 Value) |
UINT64 EFIAPI | AsmWriteLrr0 (IN UINT64 Value) |
UINT64 EFIAPI | AsmWriteLrr1 (IN UINT64 Value) |
UINT64 EFIAPI | AsmReadIbr (IN UINT8 Index) |
UINT64 EFIAPI | AsmReadDbr (IN UINT8 Index) |
UINT64 EFIAPI | AsmReadPmc (IN UINT8 Index) |
UINT64 EFIAPI | AsmReadPmd (IN UINT8 Index) |
UINT64 EFIAPI | AsmWriteIbr (IN UINT8 Index, IN UINT64 Value) |
UINT64 EFIAPI | AsmWriteDbr (IN UINT8 Index, IN UINT64 Value) |
UINT64 EFIAPI | AsmWritePmc (IN UINT8 Index, IN UINT64 Value) |
UINT64 EFIAPI | AsmWritePmd (IN UINT8 Index, IN UINT64 Value) |
UINT64 EFIAPI | AsmReadGp (VOID) |
UINT64 EFIAPI | AsmWriteGp (IN UINT64 Value) |
UINT64 EFIAPI | AsmReadSp (VOID) |
UINT64 EFIAPI | AsmReadControlRegister (IN UINT64 Index) |
UINT64 EFIAPI | AsmReadApplicationRegister (IN UINT64 Index) |
UINT64 EFIAPI | AsmReadMsr (IN UINT8 Index) |
UINT64 EFIAPI | AsmWriteMsr (IN UINT8 Index, IN UINT64 Value) |
INT64 EFIAPI | AsmCpuVirtual (VOID) |
PAL_CALL_RETURN EFIAPI | AsmPalCall (IN UINT64 PalEntryPoint, IN UINT64 Index, IN UINT64 Arg2, IN UINT64 Arg3, IN UINT64 Arg4) |
UINT32 EFIAPI | AsmCpuid (IN UINT32 Index, OUT UINT32 *Eax, OUT UINT32 *Ebx, OUT UINT32 *Ecx, OUT UINT32 *Edx) |
UINT32 EFIAPI | AsmCpuidEx (IN UINT32 Index, IN UINT32 SubIndex, OUT UINT32 *Eax, OUT UINT32 *Ebx, OUT UINT32 *Ecx, OUT UINT32 *Edx) |
VOID EFIAPI | AsmDisableCache (VOID) |
VOID EFIAPI | AsmEnableCache (VOID) |
UINT32 EFIAPI | AsmReadMsr32 (IN UINT32 Index) |
UINT32 EFIAPI | AsmWriteMsr32 (IN UINT32 Index, IN UINT32 Value) |
UINT32 EFIAPI | AsmMsrOr32 (IN UINT32 Index, IN UINT32 OrData) |
UINT32 EFIAPI | AsmMsrAnd32 (IN UINT32 Index, IN UINT32 AndData) |
UINT32 EFIAPI | AsmMsrAndThenOr32 (IN UINT32 Index, IN UINT32 AndData, IN UINT32 OrData) |
UINT32 EFIAPI | AsmMsrBitFieldRead32 (IN UINT32 Index, IN UINTN StartBit, IN UINTN EndBit) |
UINT32 EFIAPI | AsmMsrBitFieldWrite32 (IN UINT32 Index, IN UINTN StartBit, IN UINTN EndBit, IN UINT32 Value) |
UINT32 EFIAPI | AsmMsrBitFieldOr32 (IN UINT32 Index, IN UINTN StartBit, IN UINTN EndBit, IN UINT32 OrData) |
UINT32 EFIAPI | AsmMsrBitFieldAnd32 (IN UINT32 Index, IN UINTN StartBit, IN UINTN EndBit, IN UINT32 AndData) |
UINT32 EFIAPI | AsmMsrBitFieldAndThenOr32 (IN UINT32 Index, IN UINTN StartBit, IN UINTN EndBit, IN UINT32 AndData, IN UINT32 OrData) |
UINT64 EFIAPI | AsmReadMsr64 (IN UINT32 Index) |
UINT64 EFIAPI | AsmWriteMsr64 (IN UINT32 Index, IN UINT64 Value) |
UINT64 EFIAPI | AsmMsrOr64 (IN UINT32 Index, IN UINT64 OrData) |
UINT64 EFIAPI | AsmMsrAnd64 (IN UINT32 Index, IN UINT64 AndData) |
UINT64 EFIAPI | AsmMsrAndThenOr64 (IN UINT32 Index, IN UINT64 AndData, IN UINT64 OrData) |
UINT64 EFIAPI | AsmMsrBitFieldRead64 (IN UINT32 Index, IN UINTN StartBit, IN UINTN EndBit) |
UINT64 EFIAPI | AsmMsrBitFieldWrite64 (IN UINT32 Index, IN UINTN StartBit, IN UINTN EndBit, IN UINT64 Value) |
UINT64 EFIAPI | AsmMsrBitFieldOr64 (IN UINT32 Index, IN UINTN StartBit, IN UINTN EndBit, IN UINT64 OrData) |
UINT64 EFIAPI | AsmMsrBitFieldAnd64 (IN UINT32 Index, IN UINTN StartBit, IN UINTN EndBit, IN UINT64 AndData) |
UINT64 EFIAPI | AsmMsrBitFieldAndThenOr64 (IN UINT32 Index, IN UINTN StartBit, IN UINTN EndBit, IN UINT64 AndData, IN UINT64 OrData) |
UINTN EFIAPI | AsmReadEflags (VOID) |
UINTN EFIAPI | AsmReadCr0 (VOID) |
UINTN EFIAPI | AsmReadCr2 (VOID) |
UINTN EFIAPI | AsmReadCr3 (VOID) |
UINTN EFIAPI | AsmReadCr4 (VOID) |
UINTN EFIAPI | AsmWriteCr0 (UINTN Cr0) |
UINTN EFIAPI | AsmWriteCr2 (UINTN Cr2) |
UINTN EFIAPI | AsmWriteCr3 (UINTN Cr3) |
UINTN EFIAPI | AsmWriteCr4 (UINTN Cr4) |
UINTN EFIAPI | AsmReadDr0 (VOID) |
UINTN EFIAPI | AsmReadDr1 (VOID) |
UINTN EFIAPI | AsmReadDr2 (VOID) |
UINTN EFIAPI | AsmReadDr3 (VOID) |
UINTN EFIAPI | AsmReadDr4 (VOID) |
UINTN EFIAPI | AsmReadDr5 (VOID) |
UINTN EFIAPI | AsmReadDr6 (VOID) |
UINTN EFIAPI | AsmReadDr7 (VOID) |
UINTN EFIAPI | AsmWriteDr0 (UINTN Dr0) |
UINTN EFIAPI | AsmWriteDr1 (UINTN Dr1) |
UINTN EFIAPI | AsmWriteDr2 (UINTN Dr2) |
UINTN EFIAPI | AsmWriteDr3 (UINTN Dr3) |
UINTN EFIAPI | AsmWriteDr4 (UINTN Dr4) |
UINTN EFIAPI | AsmWriteDr5 (UINTN Dr5) |
UINTN EFIAPI | AsmWriteDr6 (UINTN Dr6) |
UINTN EFIAPI | AsmWriteDr7 (UINTN Dr7) |
UINT16 EFIAPI | AsmReadCs (VOID) |
UINT16 EFIAPI | AsmReadDs (VOID) |
UINT16 EFIAPI | AsmReadEs (VOID) |
UINT16 EFIAPI | AsmReadFs (VOID) |
UINT16 EFIAPI | AsmReadGs (VOID) |
UINT16 EFIAPI | AsmReadSs (VOID) |
UINT16 EFIAPI | AsmReadTr (VOID) |
VOID EFIAPI | AsmReadGdtr (OUT IA32_DESCRIPTOR *Gdtr) |
VOID EFIAPI | AsmWriteGdtr (IN CONST IA32_DESCRIPTOR *Gdtr) |
VOID EFIAPI | AsmReadIdtr (OUT IA32_DESCRIPTOR *Idtr) |
VOID EFIAPI | AsmWriteIdtr (IN CONST IA32_DESCRIPTOR *Idtr) |
UINT16 EFIAPI | AsmReadLdtr (VOID) |
VOID EFIAPI | AsmWriteLdtr (IN UINT16 Ldtr) |
VOID EFIAPI | AsmFxSave (OUT IA32_FX_BUFFER *Buffer) |
VOID EFIAPI | AsmFxRestore (IN CONST IA32_FX_BUFFER *Buffer) |
UINT64 EFIAPI | AsmReadMm0 (VOID) |
UINT64 EFIAPI | AsmReadMm1 (VOID) |
UINT64 EFIAPI | AsmReadMm2 (VOID) |
UINT64 EFIAPI | AsmReadMm3 (VOID) |
UINT64 EFIAPI | AsmReadMm4 (VOID) |
UINT64 EFIAPI | AsmReadMm5 (VOID) |
UINT64 EFIAPI | AsmReadMm6 (VOID) |
UINT64 EFIAPI | AsmReadMm7 (VOID) |
VOID EFIAPI | AsmWriteMm0 (IN UINT64 Value) |
VOID EFIAPI | AsmWriteMm1 (IN UINT64 Value) |
VOID EFIAPI | AsmWriteMm2 (IN UINT64 Value) |
VOID EFIAPI | AsmWriteMm3 (IN UINT64 Value) |
VOID EFIAPI | AsmWriteMm4 (IN UINT64 Value) |
VOID EFIAPI | AsmWriteMm5 (IN UINT64 Value) |
VOID EFIAPI | AsmWriteMm6 (IN UINT64 Value) |
VOID EFIAPI | AsmWriteMm7 (IN UINT64 Value) |
UINT64 EFIAPI | AsmReadTsc (VOID) |
UINT64 EFIAPI | AsmReadPmc (IN UINT32 Index) |
UINTN EFIAPI | AsmMonitor (IN UINTN Eax, IN UINTN Ecx, IN UINTN Edx) |
UINTN EFIAPI | AsmMwait (IN UINTN Eax, IN UINTN Ecx) |
VOID EFIAPI | AsmWbinvd (VOID) |
VOID EFIAPI | AsmInvd (VOID) |
VOID *EFIAPI | AsmFlushCacheLine (IN VOID *LinearAddress) |
VOID EFIAPI | AsmEnablePaging32 (IN SWITCH_STACK_ENTRY_POINT EntryPoint, IN VOID *Context1, IN VOID *Context2, IN VOID *NewStack) |
VOID EFIAPI | AsmDisablePaging32 (IN SWITCH_STACK_ENTRY_POINT EntryPoint, IN VOID *Context1, IN VOID *Context2, IN VOID *NewStack) |
VOID EFIAPI | AsmEnablePaging64 (IN UINT16 Cs, IN UINT64 EntryPoint, IN UINT64 Context1, IN UINT64 Context2, IN UINT64 NewStack) |
VOID EFIAPI | AsmDisablePaging64 (IN UINT16 Cs, IN UINT32 EntryPoint, IN UINT32 Context1, IN UINT32 Context2, IN UINT32 NewStack) |
VOID EFIAPI | AsmGetThunk16Properties (OUT UINT32 *RealModeBufferSize, OUT UINT32 *ExtraStackSize) |
VOID EFIAPI | AsmPrepareThunk16 (IN OUT THUNK_CONTEXT *ThunkContext) |
VOID EFIAPI | AsmThunk16 (IN OUT THUNK_CONTEXT *ThunkContext) |
VOID EFIAPI | AsmPrepareAndThunk16 (IN OUT THUNK_CONTEXT *ThunkContext) |
Copyright (c) 2006 - 2015, Intel Corporation. All rights reserved.
Portions copyright (c) 2008 - 2009, Apple Inc. All rights reserved.
This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php.
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 4 [IA32] |
#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 9 [EBC, x64] |
#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 9 [EBC, x64] |
#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 0x10 [IPF] |
#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 4 [IA32] |
#define IA32_IDT_GATE_TYPE_INTERRUPT_16 0x86 |
#define IA32_IDT_GATE_TYPE_INTERRUPT_32 0x8E |
#define IA32_IDT_GATE_TYPE_TASK 0x85 |
#define IA32_IDT_GATE_TYPE_TRAP_16 0x87 |
#define IA32_IDT_GATE_TYPE_TRAP_32 0x8F |
#define INITIALIZE_LIST_HEAD_VARIABLE | ( | ListHead | ) | {&(ListHead), &(ListHead)} |
Initializes the head node of a doubly linked list that is declared as a global variable in a module.
Initializes the forward and backward links of a new linked list. After initializing a linked list with this macro, the other linked list functions may be used to add and remove nodes from the linked list. This macro results in smaller executables by initializing the linked list in the data section, instead if calling the InitializeListHead() function to perform the equivalent operation.
ListHead | The head note of a list to initialize. |
#define IPF_APPLICATION_REGISTER_BSP 17 |
#define IPF_APPLICATION_REGISTER_BSPSTORE 18 |
#define IPF_APPLICATION_REGISTER_CCV 32 |
#define IPF_APPLICATION_REGISTER_CFLG 27 |
#define IPF_APPLICATION_REGISTER_CSD 25 |
#define IPF_APPLICATION_REGISTER_EC 66 |
#define IPF_APPLICATION_REGISTER_EFLAG 24 |
#define IPF_APPLICATION_REGISTER_FCR 21 |
#define IPF_APPLICATION_REGISTER_FDR 30 |
#define IPF_APPLICATION_REGISTER_FIR 29 |
#define IPF_APPLICATION_REGISTER_FPSR 40 |
#define IPF_APPLICATION_REGISTER_FSR 28 |
#define IPF_APPLICATION_REGISTER_ITC 44 |
#define IPF_APPLICATION_REGISTER_K0 0 |
Valid Index value for AsmReadApplicationRegister().
#define IPF_APPLICATION_REGISTER_K1 1 |
#define IPF_APPLICATION_REGISTER_K2 2 |
#define IPF_APPLICATION_REGISTER_K3 3 |
#define IPF_APPLICATION_REGISTER_K4 4 |
#define IPF_APPLICATION_REGISTER_K5 5 |
#define IPF_APPLICATION_REGISTER_K6 6 |
#define IPF_APPLICATION_REGISTER_K7 7 |
#define IPF_APPLICATION_REGISTER_LC 65 |
#define IPF_APPLICATION_REGISTER_PFS 64 |
#define IPF_APPLICATION_REGISTER_RNAT 19 |
#define IPF_APPLICATION_REGISTER_RSC 16 |
#define IPF_APPLICATION_REGISTER_SSD 26 |
#define IPF_APPLICATION_REGISTER_UNAT 36 |
#define IPF_CONTROL_REGISTER_CMCV 74 |
#define IPF_CONTROL_REGISTER_DCR 0 |
Valid Index value for AsmReadControlRegister().
#define IPF_CONTROL_REGISTER_EOI 67 |
#define IPF_CONTROL_REGISTER_IFA 20 |
#define IPF_CONTROL_REGISTER_IFS 23 |
#define IPF_CONTROL_REGISTER_IHA 25 |
#define IPF_CONTROL_REGISTER_IIM 24 |
#define IPF_CONTROL_REGISTER_IIP 19 |
#define IPF_CONTROL_REGISTER_IIPA 22 |
#define IPF_CONTROL_REGISTER_IPSR 16 |
#define IPF_CONTROL_REGISTER_IRR0 68 |
#define IPF_CONTROL_REGISTER_IRR1 69 |
#define IPF_CONTROL_REGISTER_IRR2 70 |
#define IPF_CONTROL_REGISTER_IRR3 71 |
#define IPF_CONTROL_REGISTER_ISR 17 |
#define IPF_CONTROL_REGISTER_ITIR 21 |
#define IPF_CONTROL_REGISTER_ITM 1 |
#define IPF_CONTROL_REGISTER_ITV 72 |
#define IPF_CONTROL_REGISTER_IVA 2 |
#define IPF_CONTROL_REGISTER_IVR 65 |
#define IPF_CONTROL_REGISTER_LID 64 |
#define IPF_CONTROL_REGISTER_LRR0 80 |
#define IPF_CONTROL_REGISTER_LRR1 81 |
#define IPF_CONTROL_REGISTER_PMV 73 |
#define IPF_CONTROL_REGISTER_PTA 8 |
#define IPF_CONTROL_REGISTER_TPR 66 |
#define THUNK_ATTRIBUTE_BIG_REAL_MODE 0x00000001 |
#define THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 0x00000002 |
#define THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL 0x00000004 |
typedef VOID(EFIAPI * SWITCH_STACK_ENTRY_POINT)(IN VOID *Context1, IN VOID *Context2) |
Function entry point used when a stack switch is requested with SwitchStack()
Context1 | Context1 parameter passed into SwitchStack(). | |
Context2 | Context2 parameter passed into SwitchStack(). |
Shifts a 64-bit integer right between 0 and 63 bits. The high bits are filled with original integer's bit 63. The shifted value is returned.
This function shifts the 64-bit value Operand to the right by Count bits. The high Count bits are set to bit 63 of Operand. The shifted value is returned.
If Count is greater than 63, then ASSERT().
Operand | The 64-bit operand to shift right. | |
Count | The number of bits to shift right. |
[ATTENTION] This function is deprecated for security reason.
Concatenates one Null-terminated ASCII string to another Null-terminated ASCII string, and returns the concatenated ASCII string.
This function concatenates two Null-terminated ASCII strings. The contents of Null-terminated ASCII string Source are concatenated to the end of Null- terminated ASCII string Destination. The Null-terminated concatenated ASCII String is returned.
If Destination is NULL, then ASSERT(). If Source is NULL, then ASSERT(). If PcdMaximumAsciiStringLength is not zero and Destination contains more than PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator, then ASSERT(). If PcdMaximumAsciiStringLength is not zero and Source contains more than PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator, then ASSERT(). If PcdMaximumAsciiStringLength is not zero and concatenating Destination and Source results in a ASCII string with more than PcdMaximumAsciiStringLength ASCII characters, then ASSERT().
Destination | The pointer to a Null-terminated ASCII string. | |
Source | The pointer to a Null-terminated ASCII string. |
RETURN_STATUS EFIAPI AsciiStrCatS | ( | IN OUT CHAR8 * | Destination, | |
IN UINTN | DestMax, | |||
IN CONST CHAR8 * | Source | |||
) |
Appends a copy of the string pointed to by Source (including the terminating null char) to the end of the string pointed to by Destination.
If an error would be returned, then the function will also ASSERT().
Destination | A pointer to a Null-terminated Ascii string. | |
DestMax | The maximum number of Destination Ascii char, including terminating null char. | |
Source | A pointer to a Null-terminated Ascii string. |
RETURN_SUCCESS | String is appended. | |
RETURN_BAD_BUFFER_SIZE | If DestMax is NOT greater than StrLen(Destination). | |
RETURN_BUFFER_TOO_SMALL | If (DestMax - StrLen(Destination)) is NOT greater than StrLen(Source). | |
RETURN_INVALID_PARAMETER | If Destination is NULL. If Source is NULL. If PcdMaximumAsciiStringLength is not zero, and DestMax is greater than PcdMaximumAsciiStringLength. If DestMax is 0. | |
RETURN_ACCESS_DENIED | If Source and Destination overlap. |
Compares two Null-terminated ASCII strings, and returns the difference between the first mismatched ASCII characters.
This function compares the Null-terminated ASCII string FirstString to the Null-terminated ASCII string SecondString. If FirstString is identical to SecondString, then 0 is returned. Otherwise, the value returned is the first mismatched ASCII character in SecondString subtracted from the first mismatched ASCII character in FirstString.
If FirstString is NULL, then ASSERT(). If SecondString is NULL, then ASSERT(). If PcdMaximumAsciiStringLength is not zero and FirstString contains more than PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator, then ASSERT(). If PcdMaximumAsciiStringLength is not zero and SecondString contains more than PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator, then ASSERT().
FirstString | The pointer to a Null-terminated ASCII string. | |
SecondString | The pointer to a Null-terminated ASCII string. |
==0 | FirstString is identical to SecondString. | |
!=0 | FirstString is not identical to SecondString. |
[ATTENTION] This function is deprecated for security reason.
Copies one Null-terminated ASCII string to another Null-terminated ASCII string and returns the new ASCII string.
This function copies the contents of the ASCII string Source to the ASCII string Destination, and returns Destination. If Source and Destination overlap, then the results are undefined.
If Destination is NULL, then ASSERT(). If Source is NULL, then ASSERT(). If Source and Destination overlap, then ASSERT(). If PcdMaximumAsciiStringLength is not zero and Source contains more than PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator, then ASSERT().
Destination | The pointer to a Null-terminated ASCII string. | |
Source | The pointer to a Null-terminated ASCII string. |
RETURN_STATUS EFIAPI AsciiStrCpyS | ( | OUT CHAR8 * | Destination, | |
IN UINTN | DestMax, | |||
IN CONST CHAR8 * | Source | |||
) |
Copies the string pointed to by Source (including the terminating null char) to the array pointed to by Destination.
If an error would be returned, then the function will also ASSERT().
Destination | A pointer to a Null-terminated Ascii string. | |
DestMax | The maximum number of Destination Ascii char, including terminating null char. | |
Source | A pointer to a Null-terminated Ascii string. |
RETURN_SUCCESS | String is copied. | |
RETURN_BUFFER_TOO_SMALL | If DestMax is NOT greater than StrLen(Source). | |
RETURN_INVALID_PARAMETER | If Destination is NULL. If Source is NULL. If PcdMaximumAsciiStringLength is not zero, and DestMax is greater than PcdMaximumAsciiStringLength. If DestMax is 0. | |
RETURN_ACCESS_DENIED | If Source and Destination overlap. |
Convert a Null-terminated ASCII decimal string to a value of type UINT64.
This function returns a value of type UINT64 by interpreting the contents of the ASCII string String as a decimal number. The format of the input ASCII string String is:
[spaces] [decimal digits].
The valid decimal digit character is in the range [0-9]. The function will ignore the pad space, which includes spaces or tab characters, before the digits. The running zero in the beginning of [decimal digits] will be ignored. Then, the function stops at the first character that is a not a valid decimal character or Null-terminator, whichever on comes first.
If String has only pad spaces, then 0 is returned. If String has no pad spaces or valid decimal digits, then 0 is returned. If the number represented by String overflows according to the range defined by UINT64, then ASSERT(). If String is NULL, then ASSERT(). If PcdMaximumAsciiStringLength is not zero, and String contains more than PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator, then ASSERT().
String | The pointer to a Null-terminated ASCII string. |
Value | translated from String. |
UINTN EFIAPI AsciiStrDecimalToUintn | ( | IN CONST CHAR8 * | String | ) |
Convert a Null-terminated ASCII decimal string to a value of type UINTN.
This function returns a value of type UINTN by interpreting the contents of the ASCII string String as a decimal number. The format of the input ASCII string String is:
[spaces] [decimal digits].
The valid decimal digit character is in the range [0-9]. The function will ignore the pad space, which includes spaces or tab characters, before the digits. The running zero in the beginning of [decimal digits] will be ignored. Then, the function stops at the first character that is a not a valid decimal character or Null-terminator, whichever on comes first.
If String has only pad spaces, then 0 is returned. If String has no pad spaces or valid decimal digits, then 0 is returned. If the number represented by String overflows according to the range defined by UINTN, then ASSERT(). If String is NULL, then ASSERT(). If PcdMaximumAsciiStringLength is not zero, and String contains more than PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator, then ASSERT().
String | The pointer to a Null-terminated ASCII string. |
The | value translated from String. |
Convert a Null-terminated ASCII hexadecimal string to a value of type UINT64.
This function returns a value of type UINT64 by interpreting the contents of the ASCII string String as a hexadecimal number. The format of the input ASCII string String is:
[spaces][zeros][x][hexadecimal digits].
The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F]. The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. If "x" appears in the input string, it must be prefixed with at least one 0. The function will ignore the pad space, which includes spaces or tab characters, before [zeros], [x] or [hexadecimal digits]. The running zero before [x] or [hexadecimal digits] will be ignored. Then, the decoding starts after [x] or the first valid hexadecimal digit. Then, the function stops at the first character that is a not a valid hexadecimal character or Null-terminator, whichever on comes first.
If String has only pad spaces, then 0 is returned. If String has no leading pad spaces, leading zeros or valid hexadecimal digits, then 0 is returned.
If the number represented by String overflows according to the range defined by UINT64, then ASSERT(). If String is NULL, then ASSERT(). If PcdMaximumAsciiStringLength is not zero, and String contains more than PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator, then ASSERT().
String | The pointer to a Null-terminated ASCII string. |
Value | translated from String. |
UINTN EFIAPI AsciiStrHexToUintn | ( | IN CONST CHAR8 * | String | ) |
Convert a Null-terminated ASCII hexadecimal string to a value of type UINTN.
This function returns a value of type UINTN by interpreting the contents of the ASCII string String as a hexadecimal number. The format of the input ASCII string String is:
[spaces][zeros][x][hexadecimal digits].
The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F]. The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. If "x" appears in the input string, it must be prefixed with at least one 0. The function will ignore the pad space, which includes spaces or tab characters, before [zeros], [x] or [hexadecimal digits]. The running zero before [x] or [hexadecimal digits] will be ignored. Then, the decoding starts after [x] or the first valid hexadecimal digit. Then, the function stops at the first character that is a not a valid hexadecimal character or Null-terminator, whichever on comes first.
If String has only pad spaces, then 0 is returned. If String has no leading pad spaces, leading zeros or valid hexadecimal digits, then 0 is returned.
If the number represented by String overflows according to the range defined by UINTN, then ASSERT(). If String is NULL, then ASSERT(). If PcdMaximumAsciiStringLength is not zero, and String contains more than PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator, then ASSERT().
String | The pointer to a Null-terminated ASCII string. |
Value | translated from String. |
Performs a case insensitive comparison of two Null-terminated ASCII strings, and returns the difference between the first mismatched ASCII characters.
This function performs a case insensitive comparison of the Null-terminated ASCII string FirstString to the Null-terminated ASCII string SecondString. If FirstString is identical to SecondString, then 0 is returned. Otherwise, the value returned is the first mismatched lower case ASCII character in SecondString subtracted from the first mismatched lower case ASCII character in FirstString.
If FirstString is NULL, then ASSERT(). If SecondString is NULL, then ASSERT(). If PcdMaximumAsciiStringLength is not zero and FirstString contains more than PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator, then ASSERT(). If PcdMaximumAsciiStringLength is not zero and SecondString contains more than PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator, then ASSERT().
FirstString | The pointer to a Null-terminated ASCII string. | |
SecondString | The pointer to a Null-terminated ASCII string. |
==0 | FirstString is identical to SecondString using case insensitive comparisons. | |
!=0 | FirstString is not identical to SecondString using case insensitive comparisons. |
UINTN EFIAPI AsciiStrLen | ( | IN CONST CHAR8 * | String | ) |
Returns the length of a Null-terminated ASCII string.
This function returns the number of ASCII characters in the Null-terminated ASCII string specified by String.
If Length > 0 and Destination is NULL, then ASSERT(). If Length > 0 and Source is NULL, then ASSERT(). If PcdMaximumAsciiStringLength is not zero and String contains more than PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator, then ASSERT().
String | The pointer to a Null-terminated ASCII string. |
[ATTENTION] This function is deprecated for security reason.
Concatenates up to a specified length one Null-terminated ASCII string to the end of another Null-terminated ASCII string, and returns the concatenated ASCII string.
This function concatenates two Null-terminated ASCII strings. The contents of Null-terminated ASCII string Source are concatenated to the end of Null- terminated ASCII string Destination, and Destination is returned. At most, Length ASCII characters are concatenated from Source to the end of Destination, and Destination is always Null-terminated. If Length is 0, then Destination is returned unmodified. If Source and Destination overlap, then the results are undefined.
If Length > 0 and Destination is NULL, then ASSERT(). If Length > 0 and Source is NULL, then ASSERT(). If Source and Destination overlap, then ASSERT(). If PcdMaximumAsciiStringLength is not zero, and Length is greater than PcdMaximumAsciiStringLength, then ASSERT(). If PcdMaximumAsciiStringLength is not zero, and Destination contains more than PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator, then ASSERT(). If PcdMaximumAsciiStringLength is not zero, and Source contains more than PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator, then ASSERT(). If PcdMaximumAsciiStringLength is not zero, and concatenating Destination and Source results in a ASCII string with more than PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator, then ASSERT().
Destination | The pointer to a Null-terminated ASCII string. | |
Source | The pointer to a Null-terminated ASCII string. | |
Length | The maximum number of ASCII characters to concatenate from Source. |
RETURN_STATUS EFIAPI AsciiStrnCatS | ( | IN OUT CHAR8 * | Destination, | |
IN UINTN | DestMax, | |||
IN CONST CHAR8 * | Source, | |||
IN UINTN | Length | |||
) |
Appends not more than Length successive char from the string pointed to by Source to the end of the string pointed to by Destination. If no null char is copied from Source, then Destination[StrLen(Destination) + Length] is always set to null.
If an error would be returned, then the function will also ASSERT().
Destination | A pointer to a Null-terminated Ascii string. | |
DestMax | The maximum number of Destination Ascii char, including terminating null char. | |
Source | A pointer to a Null-terminated Ascii string. | |
Length | The maximum number of Ascii characters to copy. |
RETURN_SUCCESS | String is appended. | |
RETURN_BAD_BUFFER_SIZE | If DestMax is NOT greater than StrLen(Destination). | |
RETURN_BUFFER_TOO_SMALL | If (DestMax - StrLen(Destination)) is NOT greater than MIN(StrLen(Source), Length). | |
RETURN_INVALID_PARAMETER | If Destination is NULL. If Source is NULL. If PcdMaximumAsciiStringLength is not zero, and DestMax is greater than PcdMaximumAsciiStringLength. If DestMax is 0. | |
RETURN_ACCESS_DENIED | If Source and Destination overlap. |
INTN EFIAPI AsciiStrnCmp | ( | IN CONST CHAR8 * | FirstString, | |
IN CONST CHAR8 * | SecondString, | |||
IN UINTN | Length | |||
) |
Compares two Null-terminated ASCII strings with maximum lengths, and returns the difference between the first mismatched ASCII characters.
This function compares the Null-terminated ASCII string FirstString to the Null-terminated ASCII string SecondString. At most, Length ASCII characters will be compared. If Length is 0, then 0 is returned. If FirstString is identical to SecondString, then 0 is returned. Otherwise, the value returned is the first mismatched ASCII character in SecondString subtracted from the first mismatched ASCII character in FirstString.
If Length > 0 and FirstString is NULL, then ASSERT(). If Length > 0 and SecondString is NULL, then ASSERT(). If PcdMaximumAsciiStringLength is not zero, and Length is greater than PcdMaximumAsciiStringLength, then ASSERT(). If PcdMaximumAsciiStringLength is not zero, and FirstString contains more than PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator, then ASSERT(). If PcdMaximumAsciiStringLength is not zero, and SecondString contains more than PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator, then ASSERT().
FirstString | The pointer to a Null-terminated ASCII string. | |
SecondString | The pointer to a Null-terminated ASCII string. | |
Length | The maximum number of ASCII characters for compare. |
==0 | FirstString is identical to SecondString. | |
!=0 | FirstString is not identical to SecondString. |
[ATTENTION] This function is deprecated for security reason.
Copies up to a specified length one Null-terminated ASCII string to another Null-terminated ASCII string and returns the new ASCII string.
This function copies the contents of the ASCII string Source to the ASCII string Destination, and returns Destination. At most, Length ASCII characters are copied from Source to Destination. If Length is 0, then Destination is returned unmodified. If Length is greater that the number of ASCII characters in Source, then Destination is padded with Null ASCII characters. If Source and Destination overlap, then the results are undefined.
If Destination is NULL, then ASSERT(). If Source is NULL, then ASSERT(). If Source and Destination overlap, then ASSERT(). If PcdMaximumAsciiStringLength is not zero, and Length is greater than PcdMaximumAsciiStringLength, then ASSERT(). If PcdMaximumAsciiStringLength is not zero, and Source contains more than PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator, then ASSERT().
Destination | The pointer to a Null-terminated ASCII string. | |
Source | The pointer to a Null-terminated ASCII string. | |
Length | The maximum number of ASCII characters to copy. |
RETURN_STATUS EFIAPI AsciiStrnCpyS | ( | OUT CHAR8 * | Destination, | |
IN UINTN | DestMax, | |||
IN CONST CHAR8 * | Source, | |||
IN UINTN | Length | |||
) |
Copies not more than Length successive char from the string pointed to by Source to the array pointed to by Destination. If no null char is copied from Source, then Destination[Length] is always set to null.
If an error would be returned, then the function will also ASSERT().
Destination | A pointer to a Null-terminated Ascii string. | |
DestMax | The maximum number of Destination Ascii char, including terminating null char. | |
Source | A pointer to a Null-terminated Ascii string. | |
Length | The maximum number of Ascii characters to copy. |
RETURN_SUCCESS | String is copied. | |
RETURN_BUFFER_TOO_SMALL | If DestMax is NOT greater than MIN(StrLen(Source), Length). | |
RETURN_INVALID_PARAMETER | If Destination is NULL. If Source is NULL. If PcdMaximumAsciiStringLength is not zero, and DestMax is greater than PcdMaximumAsciiStringLength. If DestMax is 0. | |
RETURN_ACCESS_DENIED | If Source and Destination overlap. |
UINTN EFIAPI AsciiStrnLenS | ( | IN CONST CHAR8 * | String, | |
IN UINTN | MaxSize | |||
) |
Returns the length of a Null-terminated Ascii string.
String | A pointer to a Null-terminated Ascii string. | |
MaxSize | The maximum number of Destination Ascii char, including terminating null char. |
0 | If String is NULL. | |
MaxSize | If there is no null character in the first MaxSize characters of String. |
UINTN EFIAPI AsciiStrSize | ( | IN CONST CHAR8 * | String | ) |
Returns the size of a Null-terminated ASCII string in bytes, including the Null terminator.
This function returns the size, in bytes, of the Null-terminated ASCII string specified by String.
If String is NULL, then ASSERT(). If PcdMaximumAsciiStringLength is not zero and String contains more than PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator, then ASSERT().
String | The pointer to a Null-terminated ASCII string. |
Returns the first occurrence of a Null-terminated ASCII sub-string in a Null-terminated ASCII string.
This function scans the contents of the ASCII string specified by String and returns the first occurrence of SearchString. If SearchString is not found in String, then NULL is returned. If the length of SearchString is zero, then String is returned.
If String is NULL, then ASSERT(). If SearchString is NULL, then ASSERT().
If PcdMaximumAsciiStringLength is not zero, and SearchString or String contains more than PcdMaximumAsciiStringLength Unicode characters not including the Null-terminator, then ASSERT().
String | The pointer to a Null-terminated ASCII string. | |
SearchString | The pointer to a Null-terminated ASCII string to search for. |
NULL | If the SearchString does not appear in String. | |
others | If there is a match return the first occurrence of SearchingString. If the length of SearchString is zero,return String. |
Convert one Null-terminated ASCII string to a Null-terminated Unicode string and returns the Unicode string.
This function converts the contents of the ASCII string Source to the Unicode string Destination, and returns Destination. The function terminates the Unicode string Destination by appending a Null-terminator character at the end. The caller is responsible to make sure Destination points to a buffer with size equal or greater than ((AsciiStrLen (Source) + 1) * sizeof (CHAR16)) in bytes.
If Destination is NULL, then ASSERT(). If Destination is not aligned on a 16-bit boundary, then ASSERT(). If Source is NULL, then ASSERT(). If Source and Destination overlap, then ASSERT(). If PcdMaximumAsciiStringLength is not zero, and Source contains more than PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator, then ASSERT(). If PcdMaximumUnicodeStringLength is not zero, and Source contains more than PcdMaximumUnicodeStringLength ASCII characters not including the Null-terminator, then ASSERT().
Source | The pointer to a Null-terminated ASCII string. | |
Destination | The pointer to a Null-terminated Unicode string. |
UINT32 EFIAPI AsmCpuid | ( | IN UINT32 | Index, | |
OUT UINT32 * | Eax, | |||
OUT UINT32 * | Ebx, | |||
OUT UINT32 * | Ecx, | |||
OUT UINT32 * | Edx | |||
) |
Retrieves CPUID information.
Executes the CPUID instruction with EAX set to the value specified by Index. This function always returns Index. If Eax is not NULL, then the value of EAX after CPUID is returned in Eax. If Ebx is not NULL, then the value of EBX after CPUID is returned in Ebx. If Ecx is not NULL, then the value of ECX after CPUID is returned in Ecx. If Edx is not NULL, then the value of EDX after CPUID is returned in Edx. This function is only available on IA-32 and x64.
Index | The 32-bit value to load into EAX prior to invoking the CPUID instruction. | |
Eax | The pointer to the 32-bit EAX value returned by the CPUID instruction. This is an optional parameter that may be NULL. | |
Ebx | The pointer to the 32-bit EBX value returned by the CPUID instruction. This is an optional parameter that may be NULL. | |
Ecx | The pointer to the 32-bit ECX value returned by the CPUID instruction. This is an optional parameter that may be NULL. | |
Edx | The pointer to the 32-bit EDX value returned by the CPUID instruction. This is an optional parameter that may be NULL. |
UINT32 EFIAPI AsmCpuidEx | ( | IN UINT32 | Index, | |
IN UINT32 | SubIndex, | |||
OUT UINT32 * | Eax, | |||
OUT UINT32 * | Ebx, | |||
OUT UINT32 * | Ecx, | |||
OUT UINT32 * | Edx | |||
) |
Retrieves CPUID information using an extended leaf identifier.
Executes the CPUID instruction with EAX set to the value specified by Index and ECX set to the value specified by SubIndex. This function always returns Index. This function is only available on IA-32 and x64.
If Eax is not NULL, then the value of EAX after CPUID is returned in Eax. If Ebx is not NULL, then the value of EBX after CPUID is returned in Ebx. If Ecx is not NULL, then the value of ECX after CPUID is returned in Ecx. If Edx is not NULL, then the value of EDX after CPUID is returned in Edx.
Index | The 32-bit value to load into EAX prior to invoking the CPUID instruction. | |
SubIndex | The 32-bit value to load into ECX prior to invoking the CPUID instruction. | |
Eax | The pointer to the 32-bit EAX value returned by the CPUID instruction. This is an optional parameter that may be NULL. | |
Ebx | The pointer to the 32-bit EBX value returned by the CPUID instruction. This is an optional parameter that may be NULL. | |
Ecx | The pointer to the 32-bit ECX value returned by the CPUID instruction. This is an optional parameter that may be NULL. | |
Edx | The pointer to the 32-bit EDX value returned by the CPUID instruction. This is an optional parameter that may be NULL. |
INT64 EFIAPI AsmCpuVirtual | ( | VOID | ) |
Determines if the CPU is currently executing in virtual, physical, or mixed mode.
Determines the current execution mode of the CPU. If the CPU is in virtual mode(PSR.RT=1, PSR.DT=1, PSR.IT=1), then 1 is returned. If the CPU is in physical mode(PSR.RT=0, PSR.DT=0, PSR.IT=0), then 0 is returned. If the CPU is not in physical mode or virtual mode, then it is in mixed mode, and -1 is returned. This function is only available on Itanium processors.
1 | The CPU is in virtual mode. | |
0 | The CPU is in physical mode. | |
-1 | The CPU is in mixed mode. |
VOID EFIAPI AsmDisableCache | ( | VOID | ) |
Set CD bit and clear NW bit of CR0 followed by a WBINVD.
Disables the caches by setting the CD bit of CR0 to 1, clearing the NW bit of CR0 to 0, and executing a WBINVD instruction. This function is only available on IA-32 and x64.
VOID EFIAPI AsmDisablePaging32 | ( | IN SWITCH_STACK_ENTRY_POINT | EntryPoint, | |
IN VOID * | Context1, | |||
IN VOID * | Context2, | |||
IN VOID * | NewStack | |||
) |
Disables the 32-bit paging mode on the CPU.
Disables the 32-bit paging mode on the CPU and returns to 32-bit protected mode. This function assumes the current execution mode is 32-paged protected mode. This function is only available on IA-32. After the 32-bit paging mode is disabled, control is transferred to the function specified by EntryPoint using the new stack specified by NewStack and passing in the parameters specified by Context1 and Context2. Context1 and Context2 are optional and may be NULL. The function EntryPoint must never return.
If the current execution mode is not 32-bit paged mode, then ASSERT(). If EntryPoint is NULL, then ASSERT(). If NewStack is NULL, then ASSERT().
There are a number of constraints that must be followed before calling this function: 1) Interrupts must be disabled. 2) The caller must be in 32-bit paged mode. 3) CR0, CR3, and CR4 must be compatible with 32-bit paged mode. 4) CR3 must point to valid page tables that guarantee that the pages for this function and the stack are identity mapped.
EntryPoint | A pointer to function to call with the new stack after paging is disabled. | |
Context1 | A pointer to the context to pass into the EntryPoint function as the first parameter after paging is disabled. | |
Context2 | A pointer to the context to pass into the EntryPoint function as the second parameter after paging is disabled. | |
NewStack | A pointer to the new stack to use for the EntryPoint function after paging is disabled. |
VOID EFIAPI AsmDisablePaging64 | ( | IN UINT16 | Cs, | |
IN UINT32 | EntryPoint, | |||
IN UINT32 | Context1, | |||
IN UINT32 | Context2, | |||
IN UINT32 | NewStack | |||
) |
Disables the 64-bit paging mode on the CPU.
Disables the 64-bit paging mode on the CPU and returns to 32-bit protected mode. This function assumes the current execution mode is 64-paging mode. This function is only available on x64. After the 64-bit paging mode is disabled, control is transferred to the function specified by EntryPoint using the new stack specified by NewStack and passing in the parameters specified by Context1 and Context2. Context1 and Context2 are optional and may be 0. The function EntryPoint must never return.
If the current execution mode is not 64-bit paged mode, then ASSERT(). If EntryPoint is 0, then ASSERT(). If NewStack is 0, then ASSERT().
Cs | The 16-bit selector to load in the CS before EntryPoint is called. The descriptor in the GDT that this selector references must be setup for 32-bit protected mode. | |
EntryPoint | The 64-bit virtual address of the function to call with the new stack after paging is disabled. | |
Context1 | The 64-bit virtual address of the context to pass into the EntryPoint function as the first parameter after paging is disabled. | |
Context2 | The 64-bit virtual address of the context to pass into the EntryPoint function as the second parameter after paging is disabled. | |
NewStack | The 64-bit virtual address of the new stack to use for the EntryPoint function after paging is disabled. |
VOID EFIAPI AsmEnableCache | ( | VOID | ) |
Perform a WBINVD and clear both the CD and NW bits of CR0.
Enables the caches by executing a WBINVD instruction and then clear both the CD and NW bits of CR0 to 0. This function is only available on IA-32 and x64.
VOID EFIAPI AsmEnablePaging32 | ( | IN SWITCH_STACK_ENTRY_POINT | EntryPoint, | |
IN VOID * | Context1, | |||
IN VOID * | Context2, | |||
IN VOID * | NewStack | |||
) |
Enables the 32-bit paging mode on the CPU.
Enables the 32-bit paging mode on the CPU. CR0, CR3, CR4, and the page tables must be properly initialized prior to calling this service. This function assumes the current execution mode is 32-bit protected mode. This function is only available on IA-32. After the 32-bit paging mode is enabled, control is transferred to the function specified by EntryPoint using the new stack specified by NewStack and passing in the parameters specified by Context1 and Context2. Context1 and Context2 are optional and may be NULL. The function EntryPoint must never return.
If the current execution mode is not 32-bit protected mode, then ASSERT(). If EntryPoint is NULL, then ASSERT(). If NewStack is NULL, then ASSERT().
There are a number of constraints that must be followed before calling this function: 1) Interrupts must be disabled. 2) The caller must be in 32-bit protected mode with flat descriptors. This means all descriptors must have a base of 0 and a limit of 4GB. 3) CR0 and CR4 must be compatible with 32-bit protected mode with flat descriptors. 4) CR3 must point to valid page tables that will be used once the transition is complete, and those page tables must guarantee that the pages for this function and the stack are identity mapped.
EntryPoint | A pointer to function to call with the new stack after paging is enabled. | |
Context1 | A pointer to the context to pass into the EntryPoint function as the first parameter after paging is enabled. | |
Context2 | A pointer to the context to pass into the EntryPoint function as the second parameter after paging is enabled. | |
NewStack | A pointer to the new stack to use for the EntryPoint function after paging is enabled. |
VOID EFIAPI AsmEnablePaging64 | ( | IN UINT16 | Cs, | |
IN UINT64 | EntryPoint, | |||
IN UINT64 | Context1, | |||
IN UINT64 | Context2, | |||
IN UINT64 | NewStack | |||
) |
Enables the 64-bit paging mode on the CPU.
Enables the 64-bit paging mode on the CPU. CR0, CR3, CR4, and the page tables must be properly initialized prior to calling this service. This function assumes the current execution mode is 32-bit protected mode with flat descriptors. This function is only available on IA-32. After the 64-bit paging mode is enabled, control is transferred to the function specified by EntryPoint using the new stack specified by NewStack and passing in the parameters specified by Context1 and Context2. Context1 and Context2 are optional and may be 0. The function EntryPoint must never return.
If the current execution mode is not 32-bit protected mode with flat descriptors, then ASSERT(). If EntryPoint is 0, then ASSERT(). If NewStack is 0, then ASSERT().
Cs | The 16-bit selector to load in the CS before EntryPoint is called. The descriptor in the GDT that this selector references must be setup for long mode. | |
EntryPoint | The 64-bit virtual address of the function to call with the new stack after paging is enabled. | |
Context1 | The 64-bit virtual address of the context to pass into the EntryPoint function as the first parameter after paging is enabled. | |
Context2 | The 64-bit virtual address of the context to pass into the EntryPoint function as the second parameter after paging is enabled. | |
NewStack | The 64-bit virtual address of the new stack to use for the EntryPoint function after paging is enabled. |
Executes an FC instruction. Executes an FC instruction on the cache line specified by Address. The cache line size affected is at least 32-bytes (aligned on a 32-byte boundary). An implementation may flush a larger region. This function is only available on Itanium processors.
Address | The Address of cache line to be flushed. |
Executes an FC.I instruction. Executes an FC.I instruction on the cache line specified by Address. The cache line size affected is at least 32-bytes (aligned on a 32-byte boundary). An implementation may flush a larger region. This function is only available on Itanium processors.
Address | The Address of cache line to be flushed. |
VOID* EFIAPI AsmFlushCacheLine | ( | IN VOID * | LinearAddress | ) |
Flushes a cache line from all the instruction and data caches within the coherency domain of the CPU.
Flushed the cache line specified by LinearAddress, and returns LinearAddress. This function is only available on IA-32 and x64.
LinearAddress | The address of the cache line to flush. If the CPU is in a physical addressing mode, then LinearAddress is a physical address. If the CPU is in a virtual addressing mode, then LinearAddress is a virtual address. |
VOID* EFIAPI AsmFlushCacheRange | ( | IN VOID * | Address, | |
IN UINTN | Length | |||
) |
Flush a range of cache lines in the cache coherency domain of the calling CPU.
Flushes the cache lines specified by Address and Length. If Address is not aligned on a cache line boundary, then entire cache line containing Address is flushed. If Address + Length is not aligned on a cache line boundary, then the entire cache line containing Address + Length - 1 is flushed. This function may choose to flush the entire cache if that is more efficient than flushing the specified range. If Length is 0, the no cache lines are flushed. Address is returned. This function is only available on Itanium processors.
If Length is greater than (MAX_ADDRESS - Address + 1), then ASSERT().
Address | The base address of the instruction lines to invalidate. If the CPU is in a physical addressing mode, then Address is a physical address. If the CPU is in a virtual addressing mode, then Address is a virtual address. | |
Length | The number of bytes to invalidate from the instruction cache. |
VOID EFIAPI AsmFxRestore | ( | IN CONST IA32_FX_BUFFER * | Buffer | ) |
Restores the current floating point/SSE/SSE2 context from a buffer.
Restores the current floating point/SSE/SSE2 state from the buffer specified by Buffer. Buffer must be aligned on a 16-byte boundary. This function is only available on IA-32 and x64.
If Buffer is NULL, then ASSERT(). If Buffer is not aligned on a 16-byte boundary, then ASSERT(). If Buffer was not saved with AsmFxSave(), then ASSERT().
Buffer | The pointer to a buffer to save the floating point/SSE/SSE2 context. |
VOID EFIAPI AsmFxSave | ( | OUT IA32_FX_BUFFER * | Buffer | ) |
Save the current floating point/SSE/SSE2 context to a buffer.
Saves the current floating point/SSE/SSE2 state to the buffer specified by Buffer. Buffer must be aligned on a 16-byte boundary. This function is only available on IA-32 and x64.
If Buffer is NULL, then ASSERT(). If Buffer is not aligned on a 16-byte boundary, then ASSERT().
Buffer | The pointer to a buffer to save the floating point/SSE/SSE2 context. |
VOID EFIAPI AsmGetThunk16Properties | ( | OUT UINT32 * | RealModeBufferSize, | |
OUT UINT32 * | ExtraStackSize | |||
) |
Retrieves the properties for 16-bit thunk functions.
Computes the size of the buffer and stack below 1MB required to use the AsmPrepareThunk16(), AsmThunk16() and AsmPrepareAndThunk16() functions. This buffer size is returned in RealModeBufferSize, and the stack size is returned in ExtraStackSize. If parameters are passed to the 16-bit real mode code, then the actual minimum stack size is ExtraStackSize plus the maximum number of bytes that need to be passed to the 16-bit real mode code.
If RealModeBufferSize is NULL, then ASSERT(). If ExtraStackSize is NULL, then ASSERT().
RealModeBufferSize | A pointer to the size of the buffer below 1MB required to use the 16-bit thunk functions. | |
ExtraStackSize | A pointer to the extra size of stack below 1MB that the 16-bit thunk functions require for temporary storage in the transition to and from 16-bit real mode. |
VOID EFIAPI AsmInvd | ( | VOID | ) |
Executes a INVD instruction.
Executes a INVD instruction. This function is only available on IA-32 and x64.
UINTN EFIAPI AsmMonitor | ( | IN UINTN | Eax, | |
IN UINTN | Ecx, | |||
IN UINTN | Edx | |||
) |
Sets up a monitor buffer that is used by AsmMwait().
Executes a MONITOR instruction with the register state specified by Eax, Ecx and Edx. Returns Eax. This function is only available on IA-32 and x64.
Eax | The value to load into EAX or RAX before executing the MONITOR instruction. | |
Ecx | The value to load into ECX or RCX before executing the MONITOR instruction. | |
Edx | The value to load into EDX or RDX before executing the MONITOR instruction. |
Reads a 64-bit MSR, performs a bitwise AND on the lower 32-bits, and writes the result back to the 64-bit MSR.
Reads the 64-bit MSR specified by Index, performs a bitwise AND between the lower 32-bits of the read result and the value specified by AndData, and writes the result to the 64-bit MSR specified by Index. The lower 32-bits of the value written to the MSR is returned. No parameter checking is performed on Index or AndData, and some of these may cause CPU exceptions. The caller must either guarantee that Index and AndData are valid, or the caller must establish proper exception handlers. This function is only available on IA-32 and x64.
Index | The 32-bit MSR index to write. | |
AndData | The value to AND with the read value from the MSR. |
Reads a 64-bit MSR, performs a bitwise AND, and writes the result back to the 64-bit MSR.
Reads the 64-bit MSR specified by Index, performs a bitwise AND between the read result and the value specified by OrData, and writes the result to the 64-bit MSR specified by Index. The value written to the MSR is returned. No parameter checking is performed on Index or OrData, and some of these may cause CPU exceptions. The caller must either guarantee that Index and OrData are valid, or the caller must establish proper exception handlers. This function is only available on IA-32 and x64.
Index | The 32-bit MSR index to write. | |
AndData | The value to AND with the read value from the MSR. |
Reads a 64-bit MSR, performs a bitwise AND followed by a bitwise OR on the lower 32-bits, and writes the result back to the 64-bit MSR.
Reads the 64-bit MSR specified by Index, performs a bitwise AND between the lower 32-bits of the read result and the value specified by AndData preserving the upper 32-bits, performs a bitwise OR between the result of the AND operation and the value specified by OrData, and writes the result to the 64-bit MSR specified by Address. The lower 32-bits of the value written to the MSR is returned. No parameter checking is performed on Index, AndData, or OrData, and some of these may cause CPU exceptions. The caller must either guarantee that Index, AndData, and OrData are valid, or the caller must establish proper exception handlers. This function is only available on IA-32 and x64.
Index | The 32-bit MSR index to write. | |
AndData | The value to AND with the read value from the MSR. | |
OrData | The value to OR with the result of the AND operation. |
Reads a 64-bit MSR, performs a bitwise AND followed by a bitwise OR, and writes the result back to the 64-bit MSR.
Reads the 64-bit MSR specified by Index, performs a bitwise AND between read result and the value specified by AndData, performs a bitwise OR between the result of the AND operation and the value specified by OrData, and writes the result to the 64-bit MSR specified by Index. The value written to the MSR is returned. No parameter checking is performed on Index, AndData, or OrData, and some of these may cause CPU exceptions. The caller must either guarantee that Index, AndData, and OrData are valid, or the caller must establish proper exception handlers. This function is only available on IA-32 and x64.
Index | The 32-bit MSR index to write. | |
AndData | The value to AND with the read value from the MSR. | |
OrData | The value to OR with the result of the AND operation. |
UINT32 EFIAPI AsmMsrBitFieldAnd32 | ( | IN UINT32 | Index, | |
IN UINTN | StartBit, | |||
IN UINTN | EndBit, | |||
IN UINT32 | AndData | |||
) |
Reads a bit field in a 64-bit MSR, performs a bitwise AND, and writes the result back to the bit field in the 64-bit MSR.
Reads the 64-bit MSR specified by Index, performs a bitwise AND between the read result and the value specified by AndData, and writes the result to the 64-bit MSR specified by Index. The lower 32-bits of the value written to the MSR are returned. Extra left bits in AndData are stripped. The caller must either guarantee that Index and the data written is valid, or the caller must set up exception handlers to catch the exceptions. This function is only available on IA-32 and x64.
If StartBit is greater than 31, then ASSERT(). If EndBit is greater than 31, then ASSERT(). If EndBit is less than StartBit, then ASSERT(). If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().
Index | The 32-bit MSR index to write. | |
StartBit | The ordinal of the least significant bit in the bit field. Range 0..31. | |
EndBit | The ordinal of the most significant bit in the bit field. Range 0..31. | |
AndData | The value to AND with the read value from the MSR. |
UINT64 EFIAPI AsmMsrBitFieldAnd64 | ( | IN UINT32 | Index, | |
IN UINTN | StartBit, | |||
IN UINTN | EndBit, | |||
IN UINT64 | AndData | |||
) |
Reads a bit field in a 64-bit MSR, performs a bitwise AND, and writes the result back to the bit field in the 64-bit MSR.
Reads the 64-bit MSR specified by Index, performs a bitwise AND between the read result and the value specified by AndData, and writes the result to the 64-bit MSR specified by Index. The value written to the MSR is returned. Extra left bits in AndData are stripped. The caller must either guarantee that Index and the data written is valid, or the caller must set up exception handlers to catch the exceptions. This function is only available on IA-32 and x64.
If StartBit is greater than 63, then ASSERT(). If EndBit is greater than 63, then ASSERT(). If EndBit is less than StartBit, then ASSERT(). If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().
Index | The 32-bit MSR index to write. | |
StartBit | The ordinal of the least significant bit in the bit field. Range 0..63. | |
EndBit | The ordinal of the most significant bit in the bit field. Range 0..63. | |
AndData | The value to AND with the read value from the bit field. |
UINT32 EFIAPI AsmMsrBitFieldAndThenOr32 | ( | IN UINT32 | Index, | |
IN UINTN | StartBit, | |||
IN UINTN | EndBit, | |||
IN UINT32 | AndData, | |||
IN UINT32 | OrData | |||
) |
Reads a bit field in a 64-bit MSR, performs a bitwise AND followed by a bitwise OR, and writes the result back to the bit field in the 64-bit MSR.
Reads the 64-bit MSR specified by Index, performs a bitwise AND followed by a bitwise OR between the read result and the value specified by AndData, and writes the result to the 64-bit MSR specified by Index. The lower 32-bits of the value written to the MSR are returned. Extra left bits in both AndData and OrData are stripped. The caller must either guarantee that Index and the data written is valid, or the caller must set up exception handlers to catch the exceptions. This function is only available on IA-32 and x64.
If StartBit is greater than 31, then ASSERT(). If EndBit is greater than 31, then ASSERT(). If EndBit is less than StartBit, then ASSERT(). If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().
Index | The 32-bit MSR index to write. | |
StartBit | The ordinal of the least significant bit in the bit field. Range 0..31. | |
EndBit | The ordinal of the most significant bit in the bit field. Range 0..31. | |
AndData | The value to AND with the read value from the MSR. | |
OrData | The value to OR with the result of the AND operation. |
UINT64 EFIAPI AsmMsrBitFieldAndThenOr64 | ( | IN UINT32 | Index, | |
IN UINTN | StartBit, | |||
IN UINTN | EndBit, | |||
IN UINT64 | AndData, | |||
IN UINT64 | OrData | |||
) |
Reads a bit field in a 64-bit MSR, performs a bitwise AND followed by a bitwise OR, and writes the result back to the bit field in the 64-bit MSR.
Reads the 64-bit MSR specified by Index, performs a bitwise AND followed by a bitwise OR between the read result and the value specified by AndData, and writes the result to the 64-bit MSR specified by Index. The value written to the MSR is returned. Extra left bits in both AndData and OrData are stripped. The caller must either guarantee that Index and the data written is valid, or the caller must set up exception handlers to catch the exceptions. This function is only available on IA-32 and x64.
If StartBit is greater than 63, then ASSERT(). If EndBit is greater than 63, then ASSERT(). If EndBit is less than StartBit, then ASSERT(). If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().
Index | The 32-bit MSR index to write. | |
StartBit | The ordinal of the least significant bit in the bit field. Range 0..63. | |
EndBit | The ordinal of the most significant bit in the bit field. Range 0..63. | |
AndData | The value to AND with the read value from the bit field. | |
OrData | The value to OR with the result of the AND operation. |
UINT32 EFIAPI AsmMsrBitFieldOr32 | ( | IN UINT32 | Index, | |
IN UINTN | StartBit, | |||
IN UINTN | EndBit, | |||
IN UINT32 | OrData | |||
) |
Reads a bit field in a 64-bit MSR, performs a bitwise OR, and writes the result back to the bit field in the 64-bit MSR.
Reads the 64-bit MSR specified by Index, performs a bitwise OR between the read result and the value specified by OrData, and writes the result to the 64-bit MSR specified by Index. The lower 32-bits of the value written to the MSR are returned. Extra left bits in OrData are stripped. The caller must either guarantee that Index and the data written is valid, or the caller must set up exception handlers to catch the exceptions. This function is only available on IA-32 and x64.
If StartBit is greater than 31, then ASSERT(). If EndBit is greater than 31, then ASSERT(). If EndBit is less than StartBit, then ASSERT(). If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().
Index | The 32-bit MSR index to write. | |
StartBit | The ordinal of the least significant bit in the bit field. Range 0..31. | |
EndBit | The ordinal of the most significant bit in the bit field. Range 0..31. | |
OrData | The value to OR with the read value from the MSR. |
UINT64 EFIAPI AsmMsrBitFieldOr64 | ( | IN UINT32 | Index, | |
IN UINTN | StartBit, | |||
IN UINTN | EndBit, | |||
IN UINT64 | OrData | |||
) |
Reads a bit field in a 64-bit MSR, performs a bitwise OR, and writes the result back to the bit field in the 64-bit MSR.
Reads the 64-bit MSR specified by Index, performs a bitwise OR between the read result and the value specified by OrData, and writes the result to the 64-bit MSR specified by Index. The value written to the MSR is returned. Extra left bits in OrData are stripped. The caller must either guarantee that Index and the data written is valid, or the caller must set up exception handlers to catch the exceptions. This function is only available on IA-32 and x64.
If StartBit is greater than 63, then ASSERT(). If EndBit is greater than 63, then ASSERT(). If EndBit is less than StartBit, then ASSERT(). If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().
Index | The 32-bit MSR index to write. | |
StartBit | The ordinal of the least significant bit in the bit field. Range 0..63. | |
EndBit | The ordinal of the most significant bit in the bit field. Range 0..63. | |
OrData | The value to OR with the read value from the bit field. |
Reads a bit field of an MSR.
Reads the bit field in the lower 32-bits of a 64-bit MSR. The bit field is specified by the StartBit and the EndBit. The value of the bit field is returned. The caller must either guarantee that Index is valid, or the caller must set up exception handlers to catch the exceptions. This function is only available on IA-32 and x64.
If StartBit is greater than 31, then ASSERT(). If EndBit is greater than 31, then ASSERT(). If EndBit is less than StartBit, then ASSERT().
Index | The 32-bit MSR index to read. | |
StartBit | The ordinal of the least significant bit in the bit field. Range 0..31. | |
EndBit | The ordinal of the most significant bit in the bit field. Range 0..31. |
Reads a bit field of an MSR.
Reads the bit field in the 64-bit MSR. The bit field is specified by the StartBit and the EndBit. The value of the bit field is returned. The caller must either guarantee that Index is valid, or the caller must set up exception handlers to catch the exceptions. This function is only available on IA-32 and x64.
If StartBit is greater than 63, then ASSERT(). If EndBit is greater than 63, then ASSERT(). If EndBit is less than StartBit, then ASSERT().
Index | The 32-bit MSR index to read. | |
StartBit | The ordinal of the least significant bit in the bit field. Range 0..63. | |
EndBit | The ordinal of the most significant bit in the bit field. Range 0..63. |
UINT32 EFIAPI AsmMsrBitFieldWrite32 | ( | IN UINT32 | Index, | |
IN UINTN | StartBit, | |||
IN UINTN | EndBit, | |||
IN UINT32 | Value | |||
) |
Writes a bit field to an MSR.
Writes Value to a bit field in the lower 32-bits of a 64-bit MSR. The bit field is specified by the StartBit and the EndBit. All other bits in the destination MSR are preserved. The lower 32-bits of the MSR written is returned. The caller must either guarantee that Index and the data written is valid, or the caller must set up exception handlers to catch the exceptions. This function is only available on IA-32 and x64.
If StartBit is greater than 31, then ASSERT(). If EndBit is greater than 31, then ASSERT(). If EndBit is less than StartBit, then ASSERT(). If Value is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().
Index | The 32-bit MSR index to write. | |
StartBit | The ordinal of the least significant bit in the bit field. Range 0..31. | |
EndBit | The ordinal of the most significant bit in the bit field. Range 0..31. | |
Value | New value of the bit field. |
UINT64 EFIAPI AsmMsrBitFieldWrite64 | ( | IN UINT32 | Index, | |
IN UINTN | StartBit, | |||
IN UINTN | EndBit, | |||
IN UINT64 | Value | |||
) |
Writes a bit field to an MSR.
Writes Value to a bit field in a 64-bit MSR. The bit field is specified by the StartBit and the EndBit. All other bits in the destination MSR are preserved. The MSR written is returned. The caller must either guarantee that Index and the data written is valid, or the caller must set up exception handlers to catch the exceptions. This function is only available on IA-32 and x64.
If StartBit is greater than 63, then ASSERT(). If EndBit is greater than 63, then ASSERT(). If EndBit is less than StartBit, then ASSERT(). If Value is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().
Index | The 32-bit MSR index to write. | |
StartBit | The ordinal of the least significant bit in the bit field. Range 0..63. | |
EndBit | The ordinal of the most significant bit in the bit field. Range 0..63. | |
Value | New value of the bit field. |
Reads a 64-bit MSR, performs a bitwise OR on the lower 32-bits, and writes the result back to the 64-bit MSR.
Reads the 64-bit MSR specified by Index, performs a bitwise OR between the lower 32-bits of the read result and the value specified by OrData, and writes the result to the 64-bit MSR specified by Index. The lower 32-bits of the value written to the MSR is returned. No parameter checking is performed on Index or OrData, and some of these may cause CPU exceptions. The caller must either guarantee that Index and OrData are valid, or the caller must establish proper exception handlers. This function is only available on IA-32 and x64.
Index | The 32-bit MSR index to write. | |
OrData | The value to OR with the read value from the MSR. |
Reads a 64-bit MSR, performs a bitwise OR, and writes the result back to the 64-bit MSR.
Reads the 64-bit MSR specified by Index, performs a bitwise OR between the read result and the value specified by OrData, and writes the result to the 64-bit MSR specified by Index. The value written to the MSR is returned. No parameter checking is performed on Index or OrData, and some of these may cause CPU exceptions. The caller must either guarantee that Index and OrData are valid, or the caller must establish proper exception handlers. This function is only available on IA-32 and x64.
Index | The 32-bit MSR index to write. | |
OrData | The value to OR with the read value from the MSR. |
UINTN EFIAPI AsmMwait | ( | IN UINTN | Eax, | |
IN UINTN | Ecx | |||
) |
Executes an MWAIT instruction.
Executes an MWAIT instruction with the register state specified by Eax and Ecx. Returns Eax. This function is only available on IA-32 and x64.
Eax | The value to load into EAX or RAX before executing the MONITOR instruction. | |
Ecx | The value to load into ECX or RCX before executing the MONITOR instruction. |
PAL_CALL_RETURN EFIAPI AsmPalCall | ( | IN UINT64 | PalEntryPoint, | |
IN UINT64 | Index, | |||
IN UINT64 | Arg2, | |||
IN UINT64 | Arg3, | |||
IN UINT64 | Arg4 | |||
) |
Makes a PAL procedure call.
This is a wrapper function to make a PAL procedure call. Based on the Index value this API will make static or stacked PAL call. The following table describes the usage of PAL Procedure Index Assignment. Architected procedures may be designated as required or optional. If a PAL procedure is specified as optional, a unique return code of 0xFFFFFFFFFFFFFFFF is returned in the Status field of the PAL_CALL_RETURN structure. This indicates that the procedure is not present in this PAL implementation. It is the caller's responsibility to check for this return code after calling any optional PAL procedure. No parameter checking is performed on the 5 input parameters, but there are some common rules that the caller should follow when making a PAL call. Any address passed to PAL as buffers for return parameters must be 8-byte aligned. Unaligned addresses may cause undefined results. For those parameters defined as reserved or some fields defined as reserved must be zero filled or the invalid argument return value may be returned or undefined result may occur during the execution of the procedure. If the PalEntryPoint does not point to a valid PAL entry point then the system behavior is undefined. This function is only available on Itanium processors.
PalEntryPoint | The PAL procedure calls entry point. | |
Index | The PAL procedure Index number. | |
Arg2 | The 2nd parameter for PAL procedure calls. | |
Arg3 | The 3rd parameter for PAL procedure calls. | |
Arg4 | The 4th parameter for PAL procedure calls. |
VOID EFIAPI AsmPrepareAndThunk16 | ( | IN OUT THUNK_CONTEXT * | ThunkContext | ) |
Prepares all structures and code for a 16-bit real mode thunk, transfers control to a 16-bit real mode entry point, and returns the results.
Prepares all structures and code for a 16-bit real mode thunk, transfers control to a 16-bit real mode entry point, and returns the results. If the caller only need to perform a single 16-bit real mode thunk, then this service should be used. If the caller intends to make more than one 16-bit real mode thunk, then it is more efficient if AsmPrepareThunk16() is called once and AsmThunk16() can be called for each 16-bit real mode thunk.
This interface is limited to be used in either physical mode or virtual modes with paging enabled where the virtual to physical mappings for ThunkContext.RealModeBuffer is mapped 1:1.
See AsmPrepareThunk16() and AsmThunk16() for the detailed description and ASSERT() conditions.
ThunkContext | A pointer to the context structure that describes the 16-bit real mode code to call. |
VOID EFIAPI AsmPrepareThunk16 | ( | IN OUT THUNK_CONTEXT * | ThunkContext | ) |
Prepares all structures a code required to use AsmThunk16().
Prepares all structures and code required to use AsmThunk16().
This interface is limited to be used in either physical mode or virtual modes with paging enabled where the virtual to physical mappings for ThunkContext.RealModeBuffer is mapped 1:1.
If ThunkContext is NULL, then ASSERT().
ThunkContext | A pointer to the context structure that describes the 16-bit real mode code to call. |
Reads a 64-bit application register.
Reads and returns the application register specified by Index. The valid Index valued are defined above in "Related Definitions". If Index is invalid then 0xFFFFFFFFFFFFFFFF is returned. This function is only available on Itanium processors.
Index | The index of the application register to read. |
UINT64 EFIAPI AsmReadCmcv | ( | VOID | ) |
Reads the current value of Corrected Machine Check Vector Register (CMCV).
Reads and returns the current value of CMCV. This function is only available on Itanium processors.
Reads a 64-bit control register.
Reads and returns the control register specified by Index. The valid Index valued are defined above in "Related Definitions". If Index is invalid then 0xFFFFFFFFFFFFFFFF is returned. This function is only available on Itanium processors.
Index | The index of the control register to read. |
Reads the current value of a Processor Identifier Register (CPUID).
Reads and returns the current value of Processor Identifier Register specified by Index. The Index of largest implemented CPUID (One less than the number of implemented CPUID registers) is determined by CPUID [3] bits {7:0}. No parameter checking is performed on Index. If the Index value is beyond the implemented CPUID register range, a Reserved Register/Field fault may occur. The caller must either guarantee that Index is valid, or the caller must set up fault handlers to catch the faults. This function is only available on Itanium processors.
Index | The 8-bit Processor Identifier Register index to read. |
UINTN EFIAPI AsmReadCr0 | ( | VOID | ) |
Reads the current value of the Control Register 0 (CR0).
Reads and returns the current value of CR0. This function is only available on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on x64.
UINTN EFIAPI AsmReadCr2 | ( | VOID | ) |
Reads the current value of the Control Register 2 (CR2).
Reads and returns the current value of CR2. This function is only available on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on x64.
UINTN EFIAPI AsmReadCr3 | ( | VOID | ) |
Reads the current value of the Control Register 3 (CR3).
Reads and returns the current value of CR3. This function is only available on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on x64.
UINTN EFIAPI AsmReadCr4 | ( | VOID | ) |
Reads the current value of the Control Register 4 (CR4).
Reads and returns the current value of CR4. This function is only available on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on x64.
UINT16 EFIAPI AsmReadCs | ( | VOID | ) |
Reads the current value of Code Segment Register (CS).
Reads and returns the current value of CS. This function is only available on IA-32 and x64.
Reads the current value of Data Breakpoint Register (DBR).
The Data Breakpoint Registers are used in pairs. The even numbered registers contain breakpoint addresses, and odd numbered registers contain breakpoint mask conditions. At least four data registers pairs are implemented on all processor models. Implemented registers are contiguous starting with register 0. No parameter checking is performed on Index. If the Index value is beyond the implemented DBR register range, a Reserved Register/Field fault may occur. The caller must either guarantee that Index is valid, or the caller must set up fault handlers to catch the faults. This function is only available on Itanium processors.
Index | The 8-bit Data Breakpoint Register index to read. |
UINT64 EFIAPI AsmReadDcr | ( | VOID | ) |
Reads the current value of Default Control Register (DCR).
Reads and returns the current value of DCR. This function is only available on Itanium processors.
UINTN EFIAPI AsmReadDr0 | ( | VOID | ) |
Reads the current value of Debug Register 0 (DR0).
Reads and returns the current value of DR0. This function is only available on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on x64.
UINTN EFIAPI AsmReadDr1 | ( | VOID | ) |
Reads the current value of Debug Register 1 (DR1).
Reads and returns the current value of DR1. This function is only available on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on x64.
UINTN EFIAPI AsmReadDr2 | ( | VOID | ) |
Reads the current value of Debug Register 2 (DR2).
Reads and returns the current value of DR2. This function is only available on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on x64.
UINTN EFIAPI AsmReadDr3 | ( | VOID | ) |
Reads the current value of Debug Register 3 (DR3).
Reads and returns the current value of DR3. This function is only available on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on x64.
UINTN EFIAPI AsmReadDr4 | ( | VOID | ) |
Reads the current value of Debug Register 4 (DR4).
Reads and returns the current value of DR4. This function is only available on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on x64.
UINTN EFIAPI AsmReadDr5 | ( | VOID | ) |
Reads the current value of Debug Register 5 (DR5).
Reads and returns the current value of DR5. This function is only available on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on x64.
UINTN EFIAPI AsmReadDr6 | ( | VOID | ) |
Reads the current value of Debug Register 6 (DR6).
Reads and returns the current value of DR6. This function is only available on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on x64.
UINTN EFIAPI AsmReadDr7 | ( | VOID | ) |
Reads the current value of Debug Register 7 (DR7).
Reads and returns the current value of DR7. This function is only available on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on x64.
UINT16 EFIAPI AsmReadDs | ( | VOID | ) |
Reads the current value of Data Segment Register (DS).
Reads and returns the current value of DS. This function is only available on IA-32 and x64.
UINTN EFIAPI AsmReadEflags | ( | VOID | ) |
Reads the current value of the EFLAGS register.
Reads and returns the current value of the EFLAGS register. This function is only available on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on x64.
UINT16 EFIAPI AsmReadEs | ( | VOID | ) |
Reads the current value of Extra Segment Register (ES).
Reads and returns the current value of ES. This function is only available on IA-32 and x64.
UINT16 EFIAPI AsmReadFs | ( | VOID | ) |
Reads the current value of FS Data Segment Register (FS).
Reads and returns the current value of FS. This function is only available on IA-32 and x64.
VOID EFIAPI AsmReadGdtr | ( | OUT IA32_DESCRIPTOR * | Gdtr | ) |
Reads the current Global Descriptor Table Register(GDTR) descriptor.
Reads and returns the current GDTR descriptor and returns it in Gdtr. This function is only available on IA-32 and x64.
If Gdtr is NULL, then ASSERT().
Gdtr | The pointer to a GDTR descriptor. |
UINT64 EFIAPI AsmReadGp | ( | VOID | ) |
Reads the current value of 64-bit Global Pointer (GP).
Reads and returns the current value of GP. This function is only available on Itanium processors.
UINT16 EFIAPI AsmReadGs | ( | VOID | ) |
Reads the current value of GS Data Segment Register (GS).
Reads and returns the current value of GS. This function is only available on IA-32 and x64.
Reads the current value of Instruction Breakpoint Register (IBR).
The Instruction Breakpoint Registers are used in pairs. The even numbered registers contain breakpoint addresses, and the odd numbered registers contain breakpoint mask conditions. At least four instruction registers pairs are implemented on all processor models. Implemented registers are contiguous starting with register 0. No parameter checking is performed on Index, and if the Index value is beyond the implemented IBR register range, a Reserved Register/Field fault may occur. The caller must either guarantee that Index is valid, or the caller must set up fault handlers to catch the faults. This function is only available on Itanium processors.
Index | The 8-bit Instruction Breakpoint Register index to read. |
VOID EFIAPI AsmReadIdtr | ( | OUT IA32_DESCRIPTOR * | Idtr | ) |
Reads the current Interrupt Descriptor Table Register(IDTR) descriptor.
Reads and returns the current IDTR descriptor and returns it in Idtr. This function is only available on IA-32 and x64.
If Idtr is NULL, then ASSERT().
Idtr | The pointer to a IDTR descriptor. |
UINT64 EFIAPI AsmReadIrr0 | ( | VOID | ) |
Reads the current value of External Interrupt Request Register #0 (IRR0).
Reads and returns the current value of IRR0. This function is only available on Itanium processors.
UINT64 EFIAPI AsmReadIrr1 | ( | VOID | ) |
Reads the current value of External Interrupt Request Register #1 (IRR1).
Reads and returns the current value of IRR1. This function is only available on Itanium processors.
UINT64 EFIAPI AsmReadIrr2 | ( | VOID | ) |
Reads the current value of External Interrupt Request Register #2 (IRR2).
Reads and returns the current value of IRR2. This function is only available on Itanium processors.
UINT64 EFIAPI AsmReadIrr3 | ( | VOID | ) |
Reads the current value of External Interrupt Request Register #3 (IRR3).
Reads and returns the current value of IRR3. This function is only available on Itanium processors.
UINT64 EFIAPI AsmReadItc | ( | VOID | ) |
Reads the current value of Interval Timer Counter Register (ITC).
Reads and returns the current value of ITC. This function is only available on Itanium processors.
UINT64 EFIAPI AsmReadItm | ( | VOID | ) |
Reads the current value of Interval Timer Match Register (ITM).
Reads and returns the current value of ITM. This function is only available on Itanium processors.
UINT64 EFIAPI AsmReadItv | ( | VOID | ) |
Reads the current value of Interval Timer Vector Register (ITV).
Reads and returns the current value of ITV. This function is only available on Itanium processors.
UINT64 EFIAPI AsmReadIva | ( | VOID | ) |
Reads the current value of Interruption Vector Address Register (IVA).
Reads and returns the current value of IVA. This function is only available on Itanium processors.
UINT64 EFIAPI AsmReadIvr | ( | VOID | ) |
Reads the current value of External Interrupt Vector Register (IVR).
Reads and returns the current value of IVR. This function is only available on Itanium processors.
UINT64 EFIAPI AsmReadKr0 | ( | VOID | ) |
Reads the current value of 64-bit Kernel Register #0 (KR0).
Reads and returns the current value of KR0. This function is only available on Itanium processors.
UINT64 EFIAPI AsmReadKr1 | ( | VOID | ) |
Reads the current value of 64-bit Kernel Register #1 (KR1).
Reads and returns the current value of KR1. This function is only available on Itanium processors.
UINT64 EFIAPI AsmReadKr2 | ( | VOID | ) |
Reads the current value of 64-bit Kernel Register #2 (KR2).
Reads and returns the current value of KR2. This function is only available on Itanium processors.
UINT64 EFIAPI AsmReadKr3 | ( | VOID | ) |
Reads the current value of 64-bit Kernel Register #3 (KR3).
Reads and returns the current value of KR3. This function is only available on Itanium processors.
UINT64 EFIAPI AsmReadKr4 | ( | VOID | ) |
Reads the current value of 64-bit Kernel Register #4 (KR4).
Reads and returns the current value of KR4. This function is only available on Itanium processors.
UINT64 EFIAPI AsmReadKr5 | ( | VOID | ) |
Reads the current value of 64-bit Kernel Register #5 (KR5).
Reads and returns the current value of KR5. This function is only available on Itanium processors.
UINT64 EFIAPI AsmReadKr6 | ( | VOID | ) |
Reads the current value of 64-bit Kernel Register #6 (KR6).
Reads and returns the current value of KR6. This function is only available on Itanium processors.
UINT64 EFIAPI AsmReadKr7 | ( | VOID | ) |
Reads the current value of 64-bit Kernel Register #7 (KR7).
Reads and returns the current value of KR7. This function is only available on Itanium processors.
UINT16 EFIAPI AsmReadLdtr | ( | VOID | ) |
Reads the current Local Descriptor Table Register(LDTR) selector.
Reads and returns the current 16-bit LDTR descriptor value. This function is only available on IA-32 and x64.
UINT64 EFIAPI AsmReadLid | ( | VOID | ) |
Reads the current value of Local Interrupt ID Register (LID).
Reads and returns the current value of LID. This function is only available on Itanium processors.
UINT64 EFIAPI AsmReadLrr0 | ( | VOID | ) |
Reads the current value of Local Redirection Register #0 (LRR0).
Reads and returns the current value of LRR0. This function is only available on Itanium processors.
UINT64 EFIAPI AsmReadLrr1 | ( | VOID | ) |
Reads the current value of Local Redirection Register #1 (LRR1).
Reads and returns the current value of LRR1. This function is only available on Itanium processors.
UINT64 EFIAPI AsmReadMm0 | ( | VOID | ) |
Reads the current value of 64-bit MMX Register #0 (MM0).
Reads and returns the current value of MM0. This function is only available on IA-32 and x64.
UINT64 EFIAPI AsmReadMm1 | ( | VOID | ) |
Reads the current value of 64-bit MMX Register #1 (MM1).
Reads and returns the current value of MM1. This function is only available on IA-32 and x64.
UINT64 EFIAPI AsmReadMm2 | ( | VOID | ) |
Reads the current value of 64-bit MMX Register #2 (MM2).
Reads and returns the current value of MM2. This function is only available on IA-32 and x64.
UINT64 EFIAPI AsmReadMm3 | ( | VOID | ) |
Reads the current value of 64-bit MMX Register #3 (MM3).
Reads and returns the current value of MM3. This function is only available on IA-32 and x64.
UINT64 EFIAPI AsmReadMm4 | ( | VOID | ) |
Reads the current value of 64-bit MMX Register #4 (MM4).
Reads and returns the current value of MM4. This function is only available on IA-32 and x64.
UINT64 EFIAPI AsmReadMm5 | ( | VOID | ) |
Reads the current value of 64-bit MMX Register #5 (MM5).
Reads and returns the current value of MM5. This function is only available on IA-32 and x64.
UINT64 EFIAPI AsmReadMm6 | ( | VOID | ) |
Reads the current value of 64-bit MMX Register #6 (MM6).
Reads and returns the current value of MM6. This function is only available on IA-32 and x64.
UINT64 EFIAPI AsmReadMm7 | ( | VOID | ) |
Reads the current value of 64-bit MMX Register #7 (MM7).
Reads and returns the current value of MM7. This function is only available on IA-32 and x64.
Reads the current value of a Machine Specific Register (MSR).
Reads and returns the current value of the Machine Specific Register specified by Index. No parameter checking is performed on Index, and if the Index value is beyond the implemented MSR register range, a Reserved Register/Field fault may occur. The caller must either guarantee that Index is valid, or the caller must set up fault handlers to catch the faults. This function is only available on Itanium processors.
Index | The 8-bit Machine Specific Register index to read. |
Returns the lower 32-bits of a Machine Specific Register(MSR).
Reads and returns the lower 32-bits of the MSR specified by Index. No parameter checking is performed on Index, and some Index values may cause CPU exceptions. The caller must either guarantee that Index is valid, or the caller must set up exception handlers to catch the exceptions. This function is only available on IA-32 and x64.
Index | The 32-bit MSR index to read. |
Returns a 64-bit Machine Specific Register(MSR).
Reads and returns the 64-bit MSR specified by Index. No parameter checking is performed on Index, and some Index values may cause CPU exceptions. The caller must either guarantee that Index is valid, or the caller must set up exception handlers to catch the exceptions. This function is only available on IA-32 and x64.
Index | The 32-bit MSR index to read. |
Reads the current value of a Performance Counter (PMC).
Reads and returns the current value of performance counter specified by Index. This function is only available on IA-32 and x64.
Index | The 32-bit Performance Counter index to read. |
Reads the current value of Performance Monitor Configuration Register (PMC).
All processor implementations provide at least four performance counters (PMC/PMD [4]...PMC/PMD [7] pairs), and four performance monitor counter overflow status registers (PMC [0]... PMC [3]). Processor implementations may provide additional implementation-dependent PMC and PMD to increase the number of 'generic' performance counters (PMC/PMD pairs). The remainder of PMC and PMD register set is implementation dependent. No parameter checking is performed on Index. If the Index value is beyond the implemented PMC register range, zero value will be returned. This function is only available on Itanium processors.
Index | The 8-bit Performance Monitor Configuration Register index to read. |
Reads the current value of Performance Monitor Data Register (PMD).
All processor implementations provide at least 4 performance counters (PMC/PMD [4]...PMC/PMD [7] pairs), and 4 performance monitor counter overflow status registers (PMC [0]... PMC [3]). Processor implementations may provide additional implementation-dependent PMC and PMD to increase the number of 'generic' performance counters (PMC/PMD pairs). The remainder of PMC and PMD register set is implementation dependent. No parameter checking is performed on Index. If the Index value is beyond the implemented PMD register range, zero value will be returned. This function is only available on Itanium processors.
Index | The 8-bit Performance Monitor Data Register index to read. |
UINT64 EFIAPI AsmReadPmv | ( | VOID | ) |
Reads the current value of Performance Monitor Vector Register (PMV).
Reads and returns the current value of PMV. This function is only available on Itanium processors.
UINT64 EFIAPI AsmReadPsr | ( | VOID | ) |
Reads the current value of 64-bit Processor Status Register (PSR). This function is only available on Itanium processors.
UINT64 EFIAPI AsmReadPta | ( | VOID | ) |
Reads the current value of Page Table Address Register (PTA).
Reads and returns the current value of PTA. This function is only available on Itanium processors.
UINT64 EFIAPI AsmReadSp | ( | VOID | ) |
Reads the current value of 64-bit Stack Pointer (SP).
Reads and returns the current value of SP. This function is only available on Itanium processors.
UINT16 EFIAPI AsmReadSs | ( | VOID | ) |
Reads the current value of Stack Segment Register (SS).
Reads and returns the current value of SS. This function is only available on IA-32 and x64.
UINT64 EFIAPI AsmReadTpr | ( | VOID | ) |
Reads the current value of Task Priority Register (TPR).
Reads and returns the current value of TPR. This function is only available on Itanium processors.
UINT16 EFIAPI AsmReadTr | ( | VOID | ) |
Reads the current value of Task Register (TR).
Reads and returns the current value of TR. This function is only available on IA-32 and x64.
UINT64 EFIAPI AsmReadTsc | ( | VOID | ) |
Reads the current value of Time Stamp Counter (TSC).
Reads and returns the current value of TSC. This function is only available on IA-32 and x64.
VOID EFIAPI AsmThunk16 | ( | IN OUT THUNK_CONTEXT * | ThunkContext | ) |
Transfers control to a 16-bit real mode entry point and returns the results.
Transfers control to a 16-bit real mode entry point and returns the results. AsmPrepareThunk16() must be called with ThunkContext before this function is used. This function must be called with interrupts disabled.
The register state from the RealModeState field of ThunkContext is restored just prior to calling the 16-bit real mode entry point. This includes the EFLAGS field of RealModeState, which is used to set the interrupt state when a 16-bit real mode entry point is called. Control is transferred to the 16-bit real mode entry point specified by the CS and Eip fields of RealModeState. The stack is initialized to the SS and ESP fields of RealModeState. Any parameters passed to the 16-bit real mode code must be populated by the caller at SS:ESP prior to calling this function. The 16-bit real mode entry point is invoked with a 16-bit CALL FAR instruction, so when accessing stack contents, the 16-bit real mode code must account for the 16-bit segment and 16-bit offset of the return address that were pushed onto the stack. The 16-bit real mode entry point must exit with a RETF instruction. The register state is captured into RealModeState immediately after the RETF instruction is executed.
If EFLAGS specifies interrupts enabled, or any of the 16-bit real mode code enables interrupts, or any of the 16-bit real mode code makes a SW interrupt, then the caller is responsible for making sure the IDT at address 0 is initialized to handle any HW or SW interrupts that may occur while in 16-bit real mode.
If EFLAGS specifies interrupts enabled, or any of the 16-bit real mode code enables interrupts, then the caller is responsible for making sure the 8259 PIC is in a state compatible with 16-bit real mode. This includes the base vectors, the interrupt masks, and the edge/level trigger mode.
If THUNK_ATTRIBUTE_BIG_REAL_MODE is set in the ThunkAttributes field of ThunkContext, then the user code is invoked in big real mode. Otherwise, the user code is invoked in 16-bit real mode with 64KB segment limits.
If neither THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 nor THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL are set in ThunkAttributes, then it is assumed that the user code did not enable the A20 mask, and no attempt is made to disable the A20 mask.
If THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 is set and THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL is clear in ThunkAttributes, then attempt to use the INT 15 service to disable the A20 mask. If this INT 15 call fails, then attempt to disable the A20 mask by directly accessing the 8042 keyboard controller I/O ports.
If THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 is clear and THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL is set in ThunkAttributes, then attempt to disable the A20 mask by directly accessing the 8042 keyboard controller I/O ports.
If ThunkContext is NULL, then ASSERT(). If AsmPrepareThunk16() was not previously called with ThunkContext, then ASSERT(). If both THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 and THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL are set in ThunkAttributes, then ASSERT().
This interface is limited to be used in either physical mode or virtual modes with paging enabled where the virtual to physical mappings for ThunkContext.RealModeBuffer are mapped 1:1.
ThunkContext | A pointer to the context structure that describes the 16-bit real mode code to call. |
VOID EFIAPI AsmWbinvd | ( | VOID | ) |
Executes a WBINVD instruction.
Executes a WBINVD instruction. This function is only available on IA-32 and x64.
Writes the current value of 64-bit Corrected Machine Check Vector Register (CMCV).
Writes the current value of CMCV. The 64-bit value written to the CMCV is returned. No parameter checking is performed on Value. All bits of Value corresponding to reserved fields of CMCV must be 0 or a Reserved Register/Field fault may occur. The caller must either guarantee that Value is valid, or the caller must set up fault handlers to catch the faults. This function is only available on Itanium processors.
Value | The 64-bit value to write to CMCV. |
UINTN EFIAPI AsmWriteCr0 | ( | UINTN | Cr0 | ) |
Writes a value to Control Register 0 (CR0).
Writes and returns a new value to CR0. This function is only available on IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.
Cr0 | The value to write to CR0. |
UINTN EFIAPI AsmWriteCr2 | ( | UINTN | Cr2 | ) |
Writes a value to Control Register 2 (CR2).
Writes and returns a new value to CR2. This function is only available on IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.
Cr2 | The value to write to CR2. |
UINTN EFIAPI AsmWriteCr3 | ( | UINTN | Cr3 | ) |
Writes a value to Control Register 3 (CR3).
Writes and returns a new value to CR3. This function is only available on IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.
Cr3 | The value to write to CR3. |
UINTN EFIAPI AsmWriteCr4 | ( | UINTN | Cr4 | ) |
Writes a value to Control Register 4 (CR4).
Writes and returns a new value to CR4. This function is only available on IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.
Cr4 | The value to write to CR4. |
Writes the current value of 64-bit Data Breakpoint Register (DBR).
Writes current value of Data Breakpoint Register specified by Index. The Data Breakpoint Registers are used in pairs. The even numbered registers contain breakpoint addresses, and odd numbered registers contain breakpoint mask conditions. At least four data registers pairs are implemented on all processor models. Implemented registers are contiguous starting with register 0. No parameter checking is performed on Index. If the Index value is beyond the implemented DBR register range, a Reserved Register/Field fault may occur. The caller must either guarantee that Index is valid, or the caller must set up fault handlers to catch the faults. This function is only available on Itanium processors.
Index | The 8-bit Data Breakpoint Register index to write. | |
Value | The 64-bit value to write to DBR. |
Writes the current value of 64-bit Default Control Register (DCR).
Writes the current value of DCR. The 64-bit value written to the DCR is returned. No parameter checking is performed on Value. All bits of Value corresponding to reserved fields of DCR must be 0 or a Reserved Register/Field fault may occur. The caller must either guarantee that Value is valid, or the caller must set up fault handlers to catch the faults. This function is only available on Itanium processors.
Value | The 64-bit value to write to DCR. |
UINTN EFIAPI AsmWriteDr0 | ( | UINTN | Dr0 | ) |
Writes a value to Debug Register 0 (DR0).
Writes and returns a new value to DR0. This function is only available on IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.
Dr0 | The value to write to Dr0. |
UINTN EFIAPI AsmWriteDr1 | ( | UINTN | Dr1 | ) |
Writes a value to Debug Register 1 (DR1).
Writes and returns a new value to DR1. This function is only available on IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.
Dr1 | The value to write to Dr1. |
UINTN EFIAPI AsmWriteDr2 | ( | UINTN | Dr2 | ) |
Writes a value to Debug Register 2 (DR2).
Writes and returns a new value to DR2. This function is only available on IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.
Dr2 | The value to write to Dr2. |
UINTN EFIAPI AsmWriteDr3 | ( | UINTN | Dr3 | ) |
Writes a value to Debug Register 3 (DR3).
Writes and returns a new value to DR3. This function is only available on IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.
Dr3 | The value to write to Dr3. |
UINTN EFIAPI AsmWriteDr4 | ( | UINTN | Dr4 | ) |
Writes a value to Debug Register 4 (DR4).
Writes and returns a new value to DR4. This function is only available on IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.
Dr4 | The value to write to Dr4. |
UINTN EFIAPI AsmWriteDr5 | ( | UINTN | Dr5 | ) |
Writes a value to Debug Register 5 (DR5).
Writes and returns a new value to DR5. This function is only available on IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.
Dr5 | The value to write to Dr5. |
UINTN EFIAPI AsmWriteDr6 | ( | UINTN | Dr6 | ) |
Writes a value to Debug Register 6 (DR6).
Writes and returns a new value to DR6. This function is only available on IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.
Dr6 | The value to write to Dr6. |
UINTN EFIAPI AsmWriteDr7 | ( | UINTN | Dr7 | ) |
Writes a value to Debug Register 7 (DR7).
Writes and returns a new value to DR7. This function is only available on IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.
Dr7 | The value to write to Dr7. |
VOID EFIAPI AsmWriteEoi | ( | VOID | ) |
Performs a write operation on End OF External Interrupt Register (EOI).
Writes a value of 0 to the EOI Register. This function is only available on Itanium processors.
VOID EFIAPI AsmWriteGdtr | ( | IN CONST IA32_DESCRIPTOR * | Gdtr | ) |
Writes the current Global Descriptor Table Register (GDTR) descriptor.
Writes and the current GDTR descriptor specified by Gdtr. This function is only available on IA-32 and x64.
If Gdtr is NULL, then ASSERT().
Gdtr | The pointer to a GDTR descriptor. |
Write the current value of 64-bit Global Pointer (GP).
Writes the current value of GP. The 64-bit value written to the GP is returned. No parameter checking is performed on Value. This function is only available on Itanium processors.
Value | The 64-bit value to write to GP. |
Writes the current value of 64-bit Instruction Breakpoint Register (IBR).
Writes current value of Instruction Breakpoint Register specified by Index. The Instruction Breakpoint Registers are used in pairs. The even numbered registers contain breakpoint addresses, and odd numbered registers contain breakpoint mask conditions. At least four instruction registers pairs are implemented on all processor models. Implemented registers are contiguous starting with register 0. No parameter checking is performed on Index. If the Index value is beyond the implemented IBR register range, a Reserved Register/Field fault may occur. The caller must either guarantee that Index is valid, or the caller must set up fault handlers to catch the faults. This function is only available on Itanium processors.
Index | The 8-bit Instruction Breakpoint Register index to write. | |
Value | The 64-bit value to write to IBR. |
VOID EFIAPI AsmWriteIdtr | ( | IN CONST IA32_DESCRIPTOR * | Idtr | ) |
Writes the current Interrupt Descriptor Table Register(IDTR) descriptor.
Writes the current IDTR descriptor and returns it in Idtr. This function is only available on IA-32 and x64.
If Idtr is NULL, then ASSERT().
Idtr | The pointer to a IDTR descriptor. |
Writes the current value of 64-bit Interval Timer Counter Register (ITC).
Writes the current value of ITC. The 64-bit value written to the ITC is returned. This function is only available on Itanium processors.
Value | The 64-bit value to write to ITC. |
Writes the current value of 64-bit Interval Timer Match Register (ITM).
Writes the current value of ITM. The 64-bit value written to the ITM is returned. This function is only available on Itanium processors.
Value | The 64-bit value to write to ITM. |
Writes the current value of 64-bit Interval Timer Vector Register (ITV).
Writes the current value of ITV. The 64-bit value written to the ITV is returned. No parameter checking is performed on Value. All bits of Value corresponding to reserved fields of ITV must be 0 or a Reserved Register/Field fault may occur. The caller must either guarantee that Value is valid, or the caller must set up fault handlers to catch the faults. This function is only available on Itanium processors.
Value | The 64-bit value to write to ITV. |
Writes the current value of 64-bit Interruption Vector Address Register (IVA).
Writes the current value of IVA. The 64-bit value written to the IVA is returned. The size of vector table is 32 K bytes and is 32 K bytes aligned the low 15 bits of Value is ignored when written. This function is only available on Itanium processors.
Value | The 64-bit value to write to IVA. |
Write the current value of 64-bit Kernel Register #0 (KR0).
Writes the current value of KR0. The 64-bit value written to the KR0 is returned. This function is only available on Itanium processors.
Value | The 64-bit value to write to KR0. |
Write the current value of 64-bit Kernel Register #1 (KR1).
Writes the current value of KR1. The 64-bit value written to the KR1 is returned. This function is only available on Itanium processors.
Value | The 64-bit value to write to KR1. |
Write the current value of 64-bit Kernel Register #2 (KR2).
Writes the current value of KR2. The 64-bit value written to the KR2 is returned. This function is only available on Itanium processors.
Value | The 64-bit value to write to KR2. |
Write the current value of 64-bit Kernel Register #3 (KR3).
Writes the current value of KR3. The 64-bit value written to the KR3 is returned. This function is only available on Itanium processors.
Value | The 64-bit value to write to KR3. |
Write the current value of 64-bit Kernel Register #4 (KR4).
Writes the current value of KR4. The 64-bit value written to the KR4 is returned. This function is only available on Itanium processors.
Value | The 64-bit value to write to KR4. |
Write the current value of 64-bit Kernel Register #5 (KR5).
Writes the current value of KR5. The 64-bit value written to the KR5 is returned. This function is only available on Itanium processors.
Value | The 64-bit value to write to KR5. |
Write the current value of 64-bit Kernel Register #6 (KR6).
Writes the current value of KR6. The 64-bit value written to the KR6 is returned. This function is only available on Itanium processors.
Value | The 64-bit value to write to KR6. |
Write the current value of 64-bit Kernel Register #7 (KR7).
Writes the current value of KR7. The 64-bit value written to the KR7 is returned. This function is only available on Itanium processors.
Value | The 64-bit value to write to KR7. |
VOID EFIAPI AsmWriteLdtr | ( | IN UINT16 | Ldtr | ) |
Writes the current Local Descriptor Table Register (LDTR) selector.
Writes and the current LDTR descriptor specified by Ldtr. This function is only available on IA-32 and x64.
Ldtr | 16-bit LDTR selector value. |
Writes the current value of 64-bit Page Local Interrupt ID Register (LID).
Writes the current value of LID. The 64-bit value written to the LID is returned. No parameter checking is performed on Value. All bits of Value corresponding to reserved fields of LID must be 0 or a Reserved Register/Field fault may occur. The caller must either guarantee that Value is valid, or the caller must set up fault handlers to catch the faults. This function is only available on Itanium processors.
Value | The 64-bit value to write to LID. |
Writes the current value of 64-bit Local Redirection Register #0 (LRR0).
Writes the current value of LRR0. The 64-bit value written to the LRR0 is returned. No parameter checking is performed on Value. All bits of Value corresponding to reserved fields of LRR0 must be 0 or a Reserved Register/Field fault may occur. The caller must either guarantee that Value is valid, or the caller must set up fault handlers to catch the faults. This function is only available on Itanium processors.
Value | The 64-bit value to write to LRR0. |
Writes the current value of 64-bit Local Redirection Register #1 (LRR1).
Writes the current value of LRR1. The 64-bit value written to the LRR1 is returned. No parameter checking is performed on Value. All bits of Value corresponding to reserved fields of LRR1 must be 0 or a Reserved Register/Field fault may occur. The caller must either guarantee that Value is valid, or the caller must set up fault handlers to catch the faults. This function is only available on Itanium processors.
Value | The 64-bit value to write to LRR1. |
VOID EFIAPI AsmWriteMm0 | ( | IN UINT64 | Value | ) |
Writes the current value of 64-bit MMX Register #0 (MM0).
Writes the current value of MM0. This function is only available on IA32 and x64.
Value | The 64-bit value to write to MM0. |
VOID EFIAPI AsmWriteMm1 | ( | IN UINT64 | Value | ) |
Writes the current value of 64-bit MMX Register #1 (MM1).
Writes the current value of MM1. This function is only available on IA32 and x64.
Value | The 64-bit value to write to MM1. |
VOID EFIAPI AsmWriteMm2 | ( | IN UINT64 | Value | ) |
Writes the current value of 64-bit MMX Register #2 (MM2).
Writes the current value of MM2. This function is only available on IA32 and x64.
Value | The 64-bit value to write to MM2. |
VOID EFIAPI AsmWriteMm3 | ( | IN UINT64 | Value | ) |
Writes the current value of 64-bit MMX Register #3 (MM3).
Writes the current value of MM3. This function is only available on IA32 and x64.
Value | The 64-bit value to write to MM3. |
VOID EFIAPI AsmWriteMm4 | ( | IN UINT64 | Value | ) |
Writes the current value of 64-bit MMX Register #4 (MM4).
Writes the current value of MM4. This function is only available on IA32 and x64.
Value | The 64-bit value to write to MM4. |
VOID EFIAPI AsmWriteMm5 | ( | IN UINT64 | Value | ) |
Writes the current value of 64-bit MMX Register #5 (MM5).
Writes the current value of MM5. This function is only available on IA32 and x64.
Value | The 64-bit value to write to MM5. |
VOID EFIAPI AsmWriteMm6 | ( | IN UINT64 | Value | ) |
Writes the current value of 64-bit MMX Register #6 (MM6).
Writes the current value of MM6. This function is only available on IA32 and x64.
Value | The 64-bit value to write to MM6. |
VOID EFIAPI AsmWriteMm7 | ( | IN UINT64 | Value | ) |
Writes the current value of 64-bit MMX Register #7 (MM7).
Writes the current value of MM7. This function is only available on IA32 and x64.
Value | The 64-bit value to write to MM7. |
Writes the current value of a Machine Specific Register (MSR).
Writes Value to the Machine Specific Register specified by Index. Value is returned. No parameter checking is performed on Index, and if the Index value is beyond the implemented MSR register range, a Reserved Register/Field fault may occur. The caller must either guarantee that Index is valid, or the caller must set up fault handlers to catch the faults. This function is only available on Itanium processors.
Index | The 8-bit Machine Specific Register index to write. | |
Value | The 64-bit value to write to the Machine Specific Register. |
Writes a 32-bit value to a Machine Specific Register(MSR), and returns the value. The upper 32-bits of the MSR are set to zero.
Writes the 32-bit value specified by Value to the MSR specified by Index. The upper 32-bits of the MSR write are set to zero. The 32-bit value written to the MSR is returned. No parameter checking is performed on Index or Value, and some of these may cause CPU exceptions. The caller must either guarantee that Index and Value are valid, or the caller must establish proper exception handlers. This function is only available on IA-32 and x64.
Index | The 32-bit MSR index to write. | |
Value | The 32-bit value to write to the MSR. |
Writes a 64-bit value to a Machine Specific Register(MSR), and returns the value.
Writes the 64-bit value specified by Value to the MSR specified by Index. The 64-bit value written to the MSR is returned. No parameter checking is performed on Index or Value, and some of these may cause CPU exceptions. The caller must either guarantee that Index and Value are valid, or the caller must establish proper exception handlers. This function is only available on IA-32 and x64.
Index | The 32-bit MSR index to write. | |
Value | The 64-bit value to write to the MSR. |
Writes the current value of 64-bit Performance Monitor Configuration Register (PMC).
Writes current value of Performance Monitor Configuration Register specified by Index. All processor implementations provide at least four performance counters (PMC/PMD [4]...PMC/PMD [7] pairs), and four performance monitor counter overflow status registers (PMC [0]... PMC [3]). Processor implementations may provide additional implementation-dependent PMC and PMD to increase the number of 'generic' performance counters (PMC/PMD pairs). The remainder of PMC and PMD register set is implementation dependent. No parameter checking is performed on Index. If the Index value is beyond the implemented PMC register range, the write is ignored. This function is only available on Itanium processors.
Index | The 8-bit Performance Monitor Configuration Register index to write. | |
Value | The 64-bit value to write to PMC. |
Writes the current value of 64-bit Performance Monitor Data Register (PMD).
Writes current value of Performance Monitor Data Register specified by Index. All processor implementations provide at least four performance counters (PMC/PMD [4]...PMC/PMD [7] pairs), and four performance monitor counter overflow status registers (PMC [0]... PMC [3]). Processor implementations may provide additional implementation-dependent PMC and PMD to increase the number of 'generic' performance counters (PMC/PMD pairs). The remainder of PMC and PMD register set is implementation dependent. No parameter checking is performed on Index. If the Index value is beyond the implemented PMD register range, the write is ignored. This function is only available on Itanium processors.
Index | The 8-bit Performance Monitor Data Register index to write. | |
Value | The 64-bit value to write to PMD. |
Writes the current value of 64-bit Performance Monitor Vector Register (PMV).
Writes the current value of PMV. The 64-bit value written to the PMV is returned. No parameter checking is performed on Value. All bits of Value corresponding to reserved fields of PMV must be 0 or a Reserved Register/Field fault may occur. The caller must either guarantee that Value is valid, or the caller must set up fault handlers to catch the faults. This function is only available on Itanium processors.
Value | The 64-bit value to write to PMV. |
Writes the current value of 64-bit Processor Status Register (PSR).
No parameter checking is performed on Value. All bits of Value corresponding to reserved fields of PSR must be 0 or a Reserved Register/Field fault may occur. The caller must either guarantee that Value is valid, or the caller must set up fault handlers to catch the faults. This function is only available on Itanium processors.
Value | The 64-bit value to write to PSR. |
Writes the current value of 64-bit Page Table Address Register (PTA).
Writes the current value of PTA. The 64-bit value written to the PTA is returned. No parameter checking is performed on Value. All bits of Value corresponding to reserved fields of DCR must be 0 or a Reserved Register/Field fault may occur. The caller must either guarantee that Value is valid, or the caller must set up fault handlers to catch the faults. This function is only available on Itanium processors.
Value | The 64-bit value to write to PTA. |
Writes the current value of 64-bit Task Priority Register (TPR).
Writes the current value of TPR. The 64-bit value written to the TPR is returned. No parameter checking is performed on Value. All bits of Value corresponding to reserved fields of TPR must be 0 or a Reserved Register/Field fault may occur. The caller must either guarantee that Value is valid, or the caller must set up fault handlers to catch the faults. This function is only available on Itanium processors.
Value | The 64-bit value to write to TPR. |
Converts an 8-bit BCD value to an 8-bit value.
Converts the 8-bit BCD value specified by Value to an 8-bit value. The 8-bit value is returned.
If Value >= 0xA0, then ASSERT(). If (Value & 0x0F) >= 0x0A, then ASSERT().
Value | The 8-bit BCD value to convert to an 8-bit value. |
UINT16 EFIAPI BitFieldAnd16 | ( | IN UINT16 | Operand, | |
IN UINTN | StartBit, | |||
IN UINTN | EndBit, | |||
IN UINT16 | AndData | |||
) |
Reads a bit field from a 16-bit value, performs a bitwise AND, and returns the result.
Performs a bitwise AND between the bit field specified by StartBit and EndBit in Operand and the value specified by AndData. All other bits in Operand are preserved. The new 16-bit value is returned.
If 16-bit operations are not supported, then ASSERT(). If StartBit is greater than 15, then ASSERT(). If EndBit is greater than 15, then ASSERT(). If EndBit is less than StartBit, then ASSERT(). If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().
Operand | Operand on which to perform the bitfield operation. | |
StartBit | The ordinal of the least significant bit in the bit field. Range 0..15. | |
EndBit | The ordinal of the most significant bit in the bit field. Range 0..15. | |
AndData | The value to AND with the read value from the value |
UINT32 EFIAPI BitFieldAnd32 | ( | IN UINT32 | Operand, | |
IN UINTN | StartBit, | |||
IN UINTN | EndBit, | |||
IN UINT32 | AndData | |||
) |
Reads a bit field from a 32-bit value, performs a bitwise AND, and returns the result.
Performs a bitwise AND between the bit field specified by StartBit and EndBit in Operand and the value specified by AndData. All other bits in Operand are preserved. The new 32-bit value is returned.
If 32-bit operations are not supported, then ASSERT(). If StartBit is greater than 31, then ASSERT(). If EndBit is greater than 31, then ASSERT(). If EndBit is less than StartBit, then ASSERT(). If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().
Operand | Operand on which to perform the bitfield operation. | |
StartBit | The ordinal of the least significant bit in the bit field. Range 0..31. | |
EndBit | The ordinal of the most significant bit in the bit field. Range 0..31. | |
AndData | The value to AND with the read value from the value |
UINT64 EFIAPI BitFieldAnd64 | ( | IN UINT64 | Operand, | |
IN UINTN | StartBit, | |||
IN UINTN | EndBit, | |||
IN UINT64 | AndData | |||
) |
Reads a bit field from a 64-bit value, performs a bitwise AND, and returns the result.
Performs a bitwise AND between the bit field specified by StartBit and EndBit in Operand and the value specified by AndData. All other bits in Operand are preserved. The new 64-bit value is returned.
If 64-bit operations are not supported, then ASSERT(). If StartBit is greater than 63, then ASSERT(). If EndBit is greater than 63, then ASSERT(). If EndBit is less than StartBit, then ASSERT(). If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().
Operand | Operand on which to perform the bitfield operation. | |
StartBit | The ordinal of the least significant bit in the bit field. Range 0..63. | |
EndBit | The ordinal of the most significant bit in the bit field. Range 0..63. | |
AndData | The value to AND with the read value from the value |
UINT8 EFIAPI BitFieldAnd8 | ( | IN UINT8 | Operand, | |
IN UINTN | StartBit, | |||
IN UINTN | EndBit, | |||
IN UINT8 | AndData | |||
) |
Reads a bit field from an 8-bit value, performs a bitwise AND, and returns the result.
Performs a bitwise AND between the bit field specified by StartBit and EndBit in Operand and the value specified by AndData. All other bits in Operand are preserved. The new 8-bit value is returned.
If 8-bit operations are not supported, then ASSERT(). If StartBit is greater than 7, then ASSERT(). If EndBit is greater than 7, then ASSERT(). If EndBit is less than StartBit, then ASSERT(). If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().
Operand | Operand on which to perform the bitfield operation. | |
StartBit | The ordinal of the least significant bit in the bit field. Range 0..7. | |
EndBit | The ordinal of the most significant bit in the bit field. Range 0..7. | |
AndData | The value to AND with the read value from the value. |
UINT16 EFIAPI BitFieldAndThenOr16 | ( | IN UINT16 | Operand, | |
IN UINTN | StartBit, | |||
IN UINTN | EndBit, | |||
IN UINT16 | AndData, | |||
IN UINT16 | OrData | |||
) |
Reads a bit field from a 16-bit value, performs a bitwise AND followed by a bitwise OR, and returns the result.
Performs a bitwise AND between the bit field specified by StartBit and EndBit in Operand and the value specified by AndData, followed by a bitwise OR with value specified by OrData. All other bits in Operand are preserved. The new 16-bit value is returned.
If 16-bit operations are not supported, then ASSERT(). If StartBit is greater than 15, then ASSERT(). If EndBit is greater than 15, then ASSERT(). If EndBit is less than StartBit, then ASSERT(). If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().
Operand | Operand on which to perform the bitfield operation. | |
StartBit | The ordinal of the least significant bit in the bit field. Range 0..15. | |
EndBit | The ordinal of the most significant bit in the bit field. Range 0..15. | |
AndData | The value to AND with the read value from the value. | |
OrData | The value to OR with the result of the AND operation. |
UINT32 EFIAPI BitFieldAndThenOr32 | ( | IN UINT32 | Operand, | |
IN UINTN | StartBit, | |||
IN UINTN | EndBit, | |||
IN UINT32 | AndData, | |||
IN UINT32 | OrData | |||
) |
Reads a bit field from a 32-bit value, performs a bitwise AND followed by a bitwise OR, and returns the result.
Performs a bitwise AND between the bit field specified by StartBit and EndBit in Operand and the value specified by AndData, followed by a bitwise OR with value specified by OrData. All other bits in Operand are preserved. The new 32-bit value is returned.
If 32-bit operations are not supported, then ASSERT(). If StartBit is greater than 31, then ASSERT(). If EndBit is greater than 31, then ASSERT(). If EndBit is less than StartBit, then ASSERT(). If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().
Operand | Operand on which to perform the bitfield operation. | |
StartBit | The ordinal of the least significant bit in the bit field. Range 0..31. | |
EndBit | The ordinal of the most significant bit in the bit field. Range 0..31. | |
AndData | The value to AND with the read value from the value. | |
OrData | The value to OR with the result of the AND operation. |
UINT64 EFIAPI BitFieldAndThenOr64 | ( | IN UINT64 | Operand, | |
IN UINTN | StartBit, | |||
IN UINTN | EndBit, | |||
IN UINT64 | AndData, | |||
IN UINT64 | OrData | |||
) |
Reads a bit field from a 64-bit value, performs a bitwise AND followed by a bitwise OR, and returns the result.
Performs a bitwise AND between the bit field specified by StartBit and EndBit in Operand and the value specified by AndData, followed by a bitwise OR with value specified by OrData. All other bits in Operand are preserved. The new 64-bit value is returned.
If 64-bit operations are not supported, then ASSERT(). If StartBit is greater than 63, then ASSERT(). If EndBit is greater than 63, then ASSERT(). If EndBit is less than StartBit, then ASSERT(). If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().
Operand | Operand on which to perform the bitfield operation. | |
StartBit | The ordinal of the least significant bit in the bit field. Range 0..63. | |
EndBit | The ordinal of the most significant bit in the bit field. Range 0..63. | |
AndData | The value to AND with the read value from the value. | |
OrData | The value to OR with the result of the AND operation. |
UINT8 EFIAPI BitFieldAndThenOr8 | ( | IN UINT8 | Operand, | |
IN UINTN | StartBit, | |||
IN UINTN | EndBit, | |||
IN UINT8 | AndData, | |||
IN UINT8 | OrData | |||
) |
Reads a bit field from an 8-bit value, performs a bitwise AND followed by a bitwise OR, and returns the result.
Performs a bitwise AND between the bit field specified by StartBit and EndBit in Operand and the value specified by AndData, followed by a bitwise OR with value specified by OrData. All other bits in Operand are preserved. The new 8-bit value is returned.
If 8-bit operations are not supported, then ASSERT(). If StartBit is greater than 7, then ASSERT(). If EndBit is greater than 7, then ASSERT(). If EndBit is less than StartBit, then ASSERT(). If AndData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT(). If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().
Operand | Operand on which to perform the bitfield operation. | |
StartBit | The ordinal of the least significant bit in the bit field. Range 0..7. | |
EndBit | The ordinal of the most significant bit in the bit field. Range 0..7. | |
AndData | The value to AND with the read value from the value. | |
OrData | The value to OR with the result of the AND operation. |
UINT16 EFIAPI BitFieldOr16 | ( | IN UINT16 | Operand, | |
IN UINTN | StartBit, | |||
IN UINTN | EndBit, | |||
IN UINT16 | OrData | |||
) |
Reads a bit field from a 16-bit value, performs a bitwise OR, and returns the result.
Performs a bitwise OR between the bit field specified by StartBit and EndBit in Operand and the value specified by OrData. All other bits in Operand are preserved. The new 16-bit value is returned.
If 16-bit operations are not supported, then ASSERT(). If StartBit is greater than 15, then ASSERT(). If EndBit is greater than 15, then ASSERT(). If EndBit is less than StartBit, then ASSERT(). If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().
Operand | Operand on which to perform the bitfield operation. | |
StartBit | The ordinal of the least significant bit in the bit field. Range 0..15. | |
EndBit | The ordinal of the most significant bit in the bit field. Range 0..15. | |
OrData | The value to OR with the read value from the value |
UINT32 EFIAPI BitFieldOr32 | ( | IN UINT32 | Operand, | |
IN UINTN | StartBit, | |||
IN UINTN | EndBit, | |||
IN UINT32 | OrData | |||
) |
Reads a bit field from a 32-bit value, performs a bitwise OR, and returns the result.
Performs a bitwise OR between the bit field specified by StartBit and EndBit in Operand and the value specified by OrData. All other bits in Operand are preserved. The new 32-bit value is returned.
If 32-bit operations are not supported, then ASSERT(). If StartBit is greater than 31, then ASSERT(). If EndBit is greater than 31, then ASSERT(). If EndBit is less than StartBit, then ASSERT(). If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().
Operand | Operand on which to perform the bitfield operation. | |
StartBit | The ordinal of the least significant bit in the bit field. Range 0..31. | |
EndBit | The ordinal of the most significant bit in the bit field. Range 0..31. | |
OrData | The value to OR with the read value from the value. |
UINT64 EFIAPI BitFieldOr64 | ( | IN UINT64 | Operand, | |
IN UINTN | StartBit, | |||
IN UINTN | EndBit, | |||
IN UINT64 | OrData | |||
) |
Reads a bit field from a 64-bit value, performs a bitwise OR, and returns the result.
Performs a bitwise OR between the bit field specified by StartBit and EndBit in Operand and the value specified by OrData. All other bits in Operand are preserved. The new 64-bit value is returned.
If 64-bit operations are not supported, then ASSERT(). If StartBit is greater than 63, then ASSERT(). If EndBit is greater than 63, then ASSERT(). If EndBit is less than StartBit, then ASSERT(). If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().
Operand | Operand on which to perform the bitfield operation. | |
StartBit | The ordinal of the least significant bit in the bit field. Range 0..63. | |
EndBit | The ordinal of the most significant bit in the bit field. Range 0..63. | |
OrData | The value to OR with the read value from the value |
Reads a bit field from an 8-bit value, performs a bitwise OR, and returns the result.
Performs a bitwise OR between the bit field specified by StartBit and EndBit in Operand and the value specified by OrData. All other bits in Operand are preserved. The new 8-bit value is returned.
If 8-bit operations are not supported, then ASSERT(). If StartBit is greater than 7, then ASSERT(). If EndBit is greater than 7, then ASSERT(). If EndBit is less than StartBit, then ASSERT(). If OrData is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().
Operand | Operand on which to perform the bitfield operation. | |
StartBit | The ordinal of the least significant bit in the bit field. Range 0..7. | |
EndBit | The ordinal of the most significant bit in the bit field. Range 0..7. | |
OrData | The value to OR with the read value from the value |
Returns a bit field from a 16-bit value.
Returns the bitfield specified by the StartBit and the EndBit from Operand.
If 16-bit operations are not supported, then ASSERT(). If StartBit is greater than 15, then ASSERT(). If EndBit is greater than 15, then ASSERT(). If EndBit is less than StartBit, then ASSERT().
Operand | Operand on which to perform the bitfield operation. | |
StartBit | The ordinal of the least significant bit in the bit field. Range 0..15. | |
EndBit | The ordinal of the most significant bit in the bit field. Range 0..15. |
Returns a bit field from a 32-bit value.
Returns the bitfield specified by the StartBit and the EndBit from Operand.
If 32-bit operations are not supported, then ASSERT(). If StartBit is greater than 31, then ASSERT(). If EndBit is greater than 31, then ASSERT(). If EndBit is less than StartBit, then ASSERT().
Operand | Operand on which to perform the bitfield operation. | |
StartBit | The ordinal of the least significant bit in the bit field. Range 0..31. | |
EndBit | The ordinal of the most significant bit in the bit field. Range 0..31. |
Returns a bit field from a 64-bit value.
Returns the bitfield specified by the StartBit and the EndBit from Operand.
If 64-bit operations are not supported, then ASSERT(). If StartBit is greater than 63, then ASSERT(). If EndBit is greater than 63, then ASSERT(). If EndBit is less than StartBit, then ASSERT().
Operand | Operand on which to perform the bitfield operation. | |
StartBit | The ordinal of the least significant bit in the bit field. Range 0..63. | |
EndBit | The ordinal of the most significant bit in the bit field. Range 0..63. |
Returns a bit field from an 8-bit value.
Returns the bitfield specified by the StartBit and the EndBit from Operand.
If 8-bit operations are not supported, then ASSERT(). If StartBit is greater than 7, then ASSERT(). If EndBit is greater than 7, then ASSERT(). If EndBit is less than StartBit, then ASSERT().
Operand | Operand on which to perform the bitfield operation. | |
StartBit | The ordinal of the least significant bit in the bit field. Range 0..7. | |
EndBit | The ordinal of the most significant bit in the bit field. Range 0..7. |
UINT16 EFIAPI BitFieldWrite16 | ( | IN UINT16 | Operand, | |
IN UINTN | StartBit, | |||
IN UINTN | EndBit, | |||
IN UINT16 | Value | |||
) |
Writes a bit field to a 16-bit value, and returns the result.
Writes Value to the bit field specified by the StartBit and the EndBit in Operand. All other bits in Operand are preserved. The new 16-bit value is returned.
If 16-bit operations are not supported, then ASSERT(). If StartBit is greater than 15, then ASSERT(). If EndBit is greater than 15, then ASSERT(). If EndBit is less than StartBit, then ASSERT(). If Value is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().
Operand | Operand on which to perform the bitfield operation. | |
StartBit | The ordinal of the least significant bit in the bit field. Range 0..15. | |
EndBit | The ordinal of the most significant bit in the bit field. Range 0..15. | |
Value | New value of the bit field. |
UINT32 EFIAPI BitFieldWrite32 | ( | IN UINT32 | Operand, | |
IN UINTN | StartBit, | |||
IN UINTN | EndBit, | |||
IN UINT32 | Value | |||
) |
Writes a bit field to a 32-bit value, and returns the result.
Writes Value to the bit field specified by the StartBit and the EndBit in Operand. All other bits in Operand are preserved. The new 32-bit value is returned.
If 32-bit operations are not supported, then ASSERT(). If StartBit is greater than 31, then ASSERT(). If EndBit is greater than 31, then ASSERT(). If EndBit is less than StartBit, then ASSERT(). If Value is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().
Operand | Operand on which to perform the bitfield operation. | |
StartBit | The ordinal of the least significant bit in the bit field. Range 0..31. | |
EndBit | The ordinal of the most significant bit in the bit field. Range 0..31. | |
Value | New value of the bit field. |
UINT64 EFIAPI BitFieldWrite64 | ( | IN UINT64 | Operand, | |
IN UINTN | StartBit, | |||
IN UINTN | EndBit, | |||
IN UINT64 | Value | |||
) |
Writes a bit field to a 64-bit value, and returns the result.
Writes Value to the bit field specified by the StartBit and the EndBit in Operand. All other bits in Operand are preserved. The new 64-bit value is returned.
If 64-bit operations are not supported, then ASSERT(). If StartBit is greater than 63, then ASSERT(). If EndBit is greater than 63, then ASSERT(). If EndBit is less than StartBit, then ASSERT(). If Value is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().
Operand | Operand on which to perform the bitfield operation. | |
StartBit | The ordinal of the least significant bit in the bit field. Range 0..63. | |
EndBit | The ordinal of the most significant bit in the bit field. Range 0..63. | |
Value | New value of the bit field. |
UINT8 EFIAPI BitFieldWrite8 | ( | IN UINT8 | Operand, | |
IN UINTN | StartBit, | |||
IN UINTN | EndBit, | |||
IN UINT8 | Value | |||
) |
Writes a bit field to an 8-bit value, and returns the result.
Writes Value to the bit field specified by the StartBit and the EndBit in Operand. All other bits in Operand are preserved. The new 8-bit value is returned.
If 8-bit operations are not supported, then ASSERT(). If StartBit is greater than 7, then ASSERT(). If EndBit is greater than 7, then ASSERT(). If EndBit is less than StartBit, then ASSERT(). If Value is larger than the bitmask value range specified by StartBit and EndBit, then ASSERT().
Operand | Operand on which to perform the bitfield operation. | |
StartBit | The ordinal of the least significant bit in the bit field. Range 0..7. | |
EndBit | The ordinal of the most significant bit in the bit field. Range 0..7. | |
Value | New value of the bit field. |
Returns the two's complement checksum of all elements in a buffer of 16-bit values.
This function first calculates the sum of the 16-bit values in the buffer specified by Buffer and Length. The carry bits in the result of addition are dropped. Then, the two's complement of the sum is returned. If Length is 0, then 0 is returned.
If Buffer is NULL, then ASSERT(). If Buffer is not aligned on a 16-bit boundary, then ASSERT(). If Length is not aligned on a 16-bit boundary, then ASSERT(). If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().
Buffer | The pointer to the buffer to carry out the checksum operation. | |
Length | The size, in bytes, of Buffer. |
Returns the two's complement checksum of all elements in a buffer of 32-bit values.
This function first calculates the sum of the 32-bit values in the buffer specified by Buffer and Length. The carry bits in the result of addition are dropped. Then, the two's complement of the sum is returned. If Length is 0, then 0 is returned.
If Buffer is NULL, then ASSERT(). If Buffer is not aligned on a 32-bit boundary, then ASSERT(). If Length is not aligned on a 32-bit boundary, then ASSERT(). If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().
Buffer | The pointer to the buffer to carry out the checksum operation. | |
Length | The size, in bytes, of Buffer. |
Returns the two's complement checksum of all elements in a buffer of 64-bit values.
This function first calculates the sum of the 64-bit values in the buffer specified by Buffer and Length. The carry bits in the result of addition are dropped. Then, the two's complement of the sum is returned. If Length is 0, then 0 is returned.
If Buffer is NULL, then ASSERT(). If Buffer is not aligned on a 64-bit boundary, then ASSERT(). If Length is not aligned on a 64-bit boundary, then ASSERT(). If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().
Buffer | The pointer to the buffer to carry out the checksum operation. | |
Length | The size, in bytes, of Buffer. |
Returns the two's complement checksum of all elements in a buffer of 8-bit values.
This function first calculates the sum of the 8-bit values in the buffer specified by Buffer and Length. The carry bits in the result of addition are dropped. Then, the two's complement of the sum is returned. If Length is 0, then 0 is returned.
If Buffer is NULL, then ASSERT(). If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().
Buffer | The pointer to the buffer to carry out the checksum operation. | |
Length | The size, in bytes, of Buffer. |
Returns the sum of all elements in a buffer of 16-bit values. During calculation, the carry bits are dropped.
This function calculates the sum of the 16-bit values in the buffer specified by Buffer and Length. The carry bits in result of addition are dropped. The 16-bit result is returned. If Length is 0, then 0 is returned.
If Buffer is NULL, then ASSERT(). If Buffer is not aligned on a 16-bit boundary, then ASSERT(). If Length is not aligned on a 16-bit boundary, then ASSERT(). If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().
Buffer | The pointer to the buffer to carry out the sum operation. | |
Length | The size, in bytes, of Buffer. |
Returns the sum of all elements in a buffer of 32-bit values. During calculation, the carry bits are dropped.
This function calculates the sum of the 32-bit values in the buffer specified by Buffer and Length. The carry bits in result of addition are dropped. The 32-bit result is returned. If Length is 0, then 0 is returned.
If Buffer is NULL, then ASSERT(). If Buffer is not aligned on a 32-bit boundary, then ASSERT(). If Length is not aligned on a 32-bit boundary, then ASSERT(). If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().
Buffer | The pointer to the buffer to carry out the sum operation. | |
Length | The size, in bytes, of Buffer. |
Returns the sum of all elements in a buffer of 64-bit values. During calculation, the carry bits are dropped.
This function calculates the sum of the 64-bit values in the buffer specified by Buffer and Length. The carry bits in result of addition are dropped. The 64-bit result is returned. If Length is 0, then 0 is returned.
If Buffer is NULL, then ASSERT(). If Buffer is not aligned on a 64-bit boundary, then ASSERT(). If Length is not aligned on a 64-bit boundary, then ASSERT(). If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().
Buffer | The pointer to the buffer to carry out the sum operation. | |
Length | The size, in bytes, of Buffer. |
Returns the sum of all elements in a buffer in unit of UINT8. During calculation, the carry bits are dropped.
This function calculates the sum of all elements in a buffer in unit of UINT8. The carry bits in result of addition are dropped. The result is returned as UINT8. If Length is Zero, then Zero is returned.
If Buffer is NULL, then ASSERT(). If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().
Buffer | The pointer to the buffer to carry out the sum operation. | |
Length | The size, in bytes, of Buffer. |
VOID EFIAPI CpuBreakpoint | ( | VOID | ) |
Generates a breakpoint on the CPU.
Generates a breakpoint on the CPU. The breakpoint must be implemented such that code can resume normal execution after the breakpoint.
VOID EFIAPI CpuDeadLoop | ( | VOID | ) |
Executes an infinite loop.
Forces the CPU to execute an infinite loop. A debugger may be used to skip past the loop and the code that follows the loop must execute properly. This implies that the infinite loop must not cause the code that follow it to be optimized away.
VOID EFIAPI CpuPause | ( | VOID | ) |
Requests CPU to pause for a short period of time.
Requests CPU to pause for a short period of time. Typically used in MP systems to prevent memory starvation while waiting for a spin lock.
Converts an 8-bit value to an 8-bit BCD value.
Converts the 8-bit value specified by Value to BCD. The BCD value is returned.
If Value >= 100, then ASSERT().
Value | The 8-bit value to convert to BCD. Range 0..99. |
VOID EFIAPI DisableInterrupts | ( | VOID | ) |
Disables CPU interrupts.
Divides a 64-bit signed integer by a 64-bit signed integer and generates a 64-bit signed result and a optional 64-bit signed remainder.
This function divides the 64-bit signed value Dividend by the 64-bit signed value Divisor and generates a 64-bit signed quotient. If Remainder is not NULL, then the 64-bit signed remainder is returned in Remainder. This function returns the 64-bit signed quotient.
It is the caller's responsibility to not call this function with a Divisor of 0. If Divisor is 0, then the quotient and remainder should be assumed to be the largest negative integer.
If Divisor is 0, then ASSERT().
Dividend | A 64-bit signed value. | |
Divisor | A 64-bit signed value. | |
Remainder | A pointer to a 64-bit signed value. This parameter is optional and may be NULL. |
Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates a 64-bit unsigned result.
This function divides the 64-bit unsigned value Dividend by the 32-bit unsigned value Divisor and generates a 64-bit unsigned quotient. This function returns the 64-bit unsigned quotient.
If Divisor is 0, then ASSERT().
Dividend | A 64-bit unsigned value. | |
Divisor | A 32-bit unsigned value. |
Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates a 64-bit unsigned result and an optional 32-bit unsigned remainder.
This function divides the 64-bit unsigned value Dividend by the 32-bit unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder is not NULL, then the 32-bit unsigned remainder is returned in Remainder. This function returns the 64-bit unsigned quotient.
If Divisor is 0, then ASSERT().
Dividend | A 64-bit unsigned value. | |
Divisor | A 32-bit unsigned value. | |
Remainder | A pointer to a 32-bit unsigned value. This parameter is optional and may be NULL. |
Divides a 64-bit unsigned integer by a 64-bit unsigned integer and generates a 64-bit unsigned result and an optional 64-bit unsigned remainder.
This function divides the 64-bit unsigned value Dividend by the 64-bit unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder is not NULL, then the 64-bit unsigned remainder is returned in Remainder. This function returns the 64-bit unsigned quotient.
If Divisor is 0, then ASSERT().
Dividend | A 64-bit unsigned value. | |
Divisor | A 64-bit unsigned value. | |
Remainder | A pointer to a 64-bit unsigned value. This parameter is optional and may be NULL. |
VOID EFIAPI EnableDisableInterrupts | ( | VOID | ) |
Enables CPU interrupts for the smallest window required to capture any pending interrupts.
VOID EFIAPI EnableInterrupts | ( | VOID | ) |
Enables CPU interrupts.
LIST_ENTRY* EFIAPI GetFirstNode | ( | IN CONST LIST_ENTRY * | List | ) |
Retrieves the first node of a doubly linked list.
Returns the first node of a doubly linked list. List must have been initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead(). If List is empty, then List is returned.
If List is NULL, then ASSERT(). If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead(), then ASSERT(). If PcdMaximumLinkedListLength is not zero, and the number of nodes in List, including the List node, is greater than or equal to PcdMaximumLinkedListLength, then ASSERT().
List | A pointer to the head node of a doubly linked list. |
List | The list is empty. |
BOOLEAN EFIAPI GetInterruptState | ( | VOID | ) |
Retrieves the current CPU interrupt state.
Returns TRUE if interrupts are currently enabled. Otherwise returns FALSE.
TRUE | CPU interrupts are enabled. | |
FALSE | CPU interrupts are disabled. |
LIST_ENTRY* EFIAPI GetNextNode | ( | IN CONST LIST_ENTRY * | List, | |
IN CONST LIST_ENTRY * | Node | |||
) |
Retrieves the next node of a doubly linked list.
Returns the node of a doubly linked list that follows Node. List must have been initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead(). If List is empty, then List is returned.
If List is NULL, then ASSERT(). If Node is NULL, then ASSERT(). If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead(), then ASSERT(). If PcdMaximumLinkedListLength is not zero, and List contains more than PcdMaximumLinkedListLength nodes, then ASSERT(). If PcdVerifyNodeInList is TRUE and Node is not a node in List, then ASSERT().
List | A pointer to the head node of a doubly linked list. | |
Node | A pointer to a node in the doubly linked list. |
Returns the value of the highest bit set in a 32-bit value. Equivalent to 1 << log2(x).
This function computes the value of the highest bit set in the 32-bit value specified by Operand. If Operand is zero, then zero is returned.
Operand | The 32-bit operand to evaluate. |
0 | Operand is zero. |
Returns the value of the highest bit set in a 64-bit value. Equivalent to 1 << log2(x).
This function computes the value of the highest bit set in the 64-bit value specified by Operand. If Operand is zero, then zero is returned.
Operand | The 64-bit operand to evaluate. |
0 | Operand is zero. |
LIST_ENTRY* EFIAPI GetPreviousNode | ( | IN CONST LIST_ENTRY * | List, | |
IN CONST LIST_ENTRY * | Node | |||
) |
Retrieves the previous node of a doubly linked list.
Returns the node of a doubly linked list that precedes Node. List must have been initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead(). If List is empty, then List is returned.
If List is NULL, then ASSERT(). If Node is NULL, then ASSERT(). If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead(), then ASSERT(). If PcdMaximumLinkedListLength is not zero, and List contains more than PcdMaximumLinkedListLength nodes, then ASSERT(). If PcdVerifyNodeInList is TRUE and Node is not a node in List, then ASSERT().
List | A pointer to the head node of a doubly linked list. | |
Node | A pointer to a node in the doubly linked list. |
Returns the bit position of the highest bit set in a 32-bit value. Equivalent to log2(x).
This function computes the bit position of the highest bit set in the 32-bit value specified by Operand. If Operand is zero, then -1 is returned. Otherwise, a value between 0 and 31 is returned.
Operand | The 32-bit operand to evaluate. |
0..31 | Position of the highest bit set in Operand if found. | |
-1 | Operand is zero. |
Returns the bit position of the highest bit set in a 64-bit value. Equivalent to log2(x).
This function computes the bit position of the highest bit set in the 64-bit value specified by Operand. If Operand is zero, then -1 is returned. Otherwise, a value between 0 and 63 is returned.
Operand | The 64-bit operand to evaluate. |
0..63 | Position of the highest bit set in Operand if found. | |
-1 | Operand is zero. |
LIST_ENTRY* EFIAPI InitializeListHead | ( | IN OUT LIST_ENTRY * | ListHead | ) |
Initializes the head node of a doubly linked list, and returns the pointer to the head node of the doubly linked list.
Initializes the forward and backward links of a new linked list. After initializing a linked list with this function, the other linked list functions may be used to add and remove nodes from the linked list. It is up to the caller of this function to allocate the memory for ListHead.
If ListHead is NULL, then ASSERT().
ListHead | A pointer to the head node of a new doubly linked list. |
LIST_ENTRY* EFIAPI InsertHeadList | ( | IN OUT LIST_ENTRY * | ListHead, | |
IN OUT LIST_ENTRY * | Entry | |||
) |
Adds a node to the beginning of a doubly linked list, and returns the pointer to the head node of the doubly linked list.
Adds the node Entry at the beginning of the doubly linked list denoted by ListHead, and returns ListHead.
If ListHead is NULL, then ASSERT(). If Entry is NULL, then ASSERT(). If ListHead was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead(), then ASSERT(). If PcdMaximumLinkedListLength is not zero, and prior to insertion the number of nodes in ListHead, including the ListHead node, is greater than or equal to PcdMaximumLinkedListLength, then ASSERT().
ListHead | A pointer to the head node of a doubly linked list. | |
Entry | A pointer to a node that is to be inserted at the beginning of a doubly linked list. |
LIST_ENTRY* EFIAPI InsertTailList | ( | IN OUT LIST_ENTRY * | ListHead, | |
IN OUT LIST_ENTRY * | Entry | |||
) |
Adds a node to the end of a doubly linked list, and returns the pointer to the head node of the doubly linked list.
Adds the node Entry to the end of the doubly linked list denoted by ListHead, and returns ListHead.
If ListHead is NULL, then ASSERT(). If Entry is NULL, then ASSERT(). If ListHead was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead(), then ASSERT(). If PcdMaximumLinkedListLength is not zero, and prior to insertion the number of nodes in ListHead, including the ListHead node, is greater than or equal to PcdMaximumLinkedListLength, then ASSERT().
ListHead | A pointer to the head node of a doubly linked list. | |
Entry | A pointer to a node that is to be added at the end of the doubly linked list. |
BOOLEAN EFIAPI IsListEmpty | ( | IN CONST LIST_ENTRY * | ListHead | ) |
Checks to see if a doubly linked list is empty or not.
Checks to see if the doubly linked list is empty. If the linked list contains zero nodes, this function returns TRUE. Otherwise, it returns FALSE.
If ListHead is NULL, then ASSERT(). If ListHead was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead(), then ASSERT(). If PcdMaximumLinkedListLength is not zero, and the number of nodes in List, including the List node, is greater than or equal to PcdMaximumLinkedListLength, then ASSERT().
ListHead | A pointer to the head node of a doubly linked list. |
TRUE | The linked list is empty. | |
FALSE | The linked list is not empty. |
BOOLEAN EFIAPI IsNodeAtEnd | ( | IN CONST LIST_ENTRY * | List, | |
IN CONST LIST_ENTRY * | Node | |||
) |
Determines if a node the last node in a doubly linked list.
Returns TRUE if Node is the last node in the doubly linked list specified by List. Otherwise, FALSE is returned. List must have been initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead().
If List is NULL, then ASSERT(). If Node is NULL, then ASSERT(). If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead(), then ASSERT(). If PcdMaximumLinkedListLength is not zero, and the number of nodes in List, including the List node, is greater than or equal to PcdMaximumLinkedListLength, then ASSERT(). If PcdVerifyNodeInList is TRUE and Node is not a node in List, then ASSERT().
List | A pointer to the head node of a doubly linked list. | |
Node | A pointer to a node in the doubly linked list. |
TRUE | Node is the last node in the linked list. | |
FALSE | Node is not the last node in the linked list. |
BOOLEAN EFIAPI IsNull | ( | IN CONST LIST_ENTRY * | List, | |
IN CONST LIST_ENTRY * | Node | |||
) |
Determines if a node in a doubly linked list is the head node of a the same doubly linked list. This function is typically used to terminate a loop that traverses all the nodes in a doubly linked list starting with the head node.
Returns TRUE if Node is equal to List. Returns FALSE if Node is one of the nodes in the doubly linked list specified by List. List must have been initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead().
If List is NULL, then ASSERT(). If Node is NULL, then ASSERT(). If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead(), then ASSERT(). If PcdMaximumLinkedListLength is not zero, and the number of nodes in List, including the List node, is greater than or equal to PcdMaximumLinkedListLength, then ASSERT(). If PcdVerifyNodeInList is TRUE and Node is not a node in List the and Node is not equal to List, then ASSERT().
List | A pointer to the head node of a doubly linked list. | |
Node | A pointer to a node in the doubly linked list. |
TRUE | Node is the head of the doubly-linked list pointed by List. | |
FALSE | Node is not the head of the doubly-linked list pointed by List. |
VOID EFIAPI LongJump | ( | JumpBuffer, | ||
IN UINTN | Value | |||
) |
Restores the CPU context that was saved with SetJump().
Restores the CPU context from the buffer specified by JumpBuffer. This function never returns to the caller. Instead is resumes execution based on the state of JumpBuffer.
If JumpBuffer is NULL, then ASSERT(). For Itanium processors, if JumpBuffer is not aligned on a 16-byte boundary, then ASSERT(). If Value is 0, then ASSERT().
JumpBuffer | A pointer to CPU context buffer. | |
Value | The value to return when the SetJump() context is restored and must be non-zero. |
Returns the bit position of the lowest bit set in a 32-bit value.
This function computes the bit position of the lowest bit set in the 32-bit value specified by Operand. If Operand is zero, then -1 is returned. Otherwise, a value between 0 and 31 is returned.
Operand | The 32-bit operand to evaluate. |
0..31 | The lowest bit set in Operand was found. | |
-1 | Operand is zero. |
Returns the bit position of the lowest bit set in a 64-bit value.
This function computes the bit position of the lowest bit set in the 64-bit value specified by Operand. If Operand is zero, then -1 is returned. Otherwise, a value between 0 and 63 is returned.
Operand | The 64-bit operand to evaluate. |
0..63 | The lowest bit set in Operand was found. | |
-1 | Operand is zero. |
Rotates a 32-bit integer left between 0 and 31 bits, filling the low bits with the high bits that were rotated.
This function rotates the 32-bit value Operand to the left by Count bits. The low Count bits are fill with the high Count bits of Operand. The rotated value is returned.
If Count is greater than 31, then ASSERT().
Operand | The 32-bit operand to rotate left. | |
Count | The number of bits to rotate left. |
Rotates a 64-bit integer left between 0 and 63 bits, filling the low bits with the high bits that were rotated.
This function rotates the 64-bit value Operand to the left by Count bits. The low Count bits are fill with the high Count bits of Operand. The rotated value is returned.
If Count is greater than 63, then ASSERT().
Operand | The 64-bit operand to rotate left. | |
Count | The number of bits to rotate left. |
Shifts a 64-bit integer left between 0 and 63 bits. The low bits are filled with zeros. The shifted value is returned.
This function shifts the 64-bit value Operand to the left by Count bits. The low Count bits are set to zero. The shifted value is returned.
If Count is greater than 63, then ASSERT().
Operand | The 64-bit operand to shift left. | |
Count | The number of bits to shift left. |
VOID EFIAPI MemoryFence | ( | VOID | ) |
Used to serialize load and store operations.
All loads and stores that proceed calls to this function are guaranteed to be globally visible when this function returns.
Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates a 32-bit unsigned remainder.
This function divides the 64-bit unsigned value Dividend by the 32-bit unsigned value Divisor and generates a 32-bit remainder. This function returns the 32-bit unsigned remainder.
If Divisor is 0, then ASSERT().
Dividend | A 64-bit unsigned value. | |
Divisor | A 32-bit unsigned value. |
Multiples a 64-bit signed integer by a 64-bit signed integer and generates a 64-bit signed result.
This function multiples the 64-bit signed value Multiplicand by the 64-bit signed value Multiplier and generates a 64-bit signed result. This 64-bit signed result is returned.
Multiplicand | A 64-bit signed value. | |
Multiplier | A 64-bit signed value. |
Multiples a 64-bit unsigned integer by a 32-bit unsigned integer and generates a 64-bit unsigned result.
This function multiples the 64-bit unsigned value Multiplicand by the 32-bit unsigned value Multiplier and generates a 64-bit unsigned result. This 64- bit unsigned result is returned.
Multiplicand | A 64-bit unsigned value. | |
Multiplier | A 32-bit unsigned value. |
Multiples a 64-bit unsigned integer by a 64-bit unsigned integer and generates a 64-bit unsigned result.
This function multiples the 64-bit unsigned value Multiplicand by the 64-bit unsigned value Multiplier and generates a 64-bit unsigned result. This 64- bit unsigned result is returned.
Multiplicand | A 64-bit unsigned value. | |
Multiplier | A 64-bit unsigned value. |
Function to clean up paths.
This will be done inline and the existing buffer may be larger than required upon completion.
[in] | Path | The pointer to the string containing the path. |
Removes the last directory or file entry in a path by changing the last L'\' to a CHAR_NULL.
[in,out] | Path | The pointer to the path to modify. |
FALSE | Nothing was found to remove. | |
TRUE | A directory or file was removed. |
Reads a 16-bit value from memory that may be unaligned.
This function returns the 16-bit value pointed to by Buffer. The function guarantees that the read operation does not produce an alignment fault.
If the Buffer is NULL, then ASSERT().
Buffer | The pointer to a 16-bit value that may be unaligned. |
Reads a 24-bit value from memory that may be unaligned.
This function returns the 24-bit value pointed to by Buffer. The function guarantees that the read operation does not produce an alignment fault.
If the Buffer is NULL, then ASSERT().
Buffer | The pointer to a 24-bit value that may be unaligned. |
Reads a 32-bit value from memory that may be unaligned.
This function returns the 32-bit value pointed to by Buffer. The function guarantees that the read operation does not produce an alignment fault.
If the Buffer is NULL, then ASSERT().
Buffer | The pointer to a 32-bit value that may be unaligned. |
Reads a 64-bit value from memory that may be unaligned.
This function returns the 64-bit value pointed to by Buffer. The function guarantees that the read operation does not produce an alignment fault.
If the Buffer is NULL, then ASSERT().
Buffer | The pointer to a 64-bit value that may be unaligned. |
LIST_ENTRY* EFIAPI RemoveEntryList | ( | IN CONST LIST_ENTRY * | Entry | ) |
Removes a node from a doubly linked list, and returns the node that follows the removed node.
Removes the node Entry from a doubly linked list. It is up to the caller of this function to release the memory used by this node if that is required. On exit, the node following Entry in the doubly linked list is returned. If Entry is the only node in the linked list, then the head node of the linked list is returned.
If Entry is NULL, then ASSERT(). If Entry is the head node of an empty list, then ASSERT(). If PcdMaximumLinkedListLength is not zero, and the number of nodes in the linked list containing Entry, including the Entry node, is greater than or equal to PcdMaximumLinkedListLength, then ASSERT().
Entry | A pointer to a node in a linked list. |
Rotates a 32-bit integer right between 0 and 31 bits, filling the high bits with the low bits that were rotated.
This function rotates the 32-bit value Operand to the right by Count bits. The high Count bits are fill with the low Count bits of Operand. The rotated value is returned.
If Count is greater than 31, then ASSERT().
Operand | The 32-bit operand to rotate right. | |
Count | The number of bits to rotate right. |
Rotates a 64-bit integer right between 0 and 63 bits, filling the high bits with the high low bits that were rotated.
This function rotates the 64-bit value Operand to the right by Count bits. The high Count bits are fill with the low Count bits of Operand. The rotated value is returned.
If Count is greater than 63, then ASSERT().
Operand | The 64-bit operand to rotate right. | |
Count | The number of bits to rotate right. |
Shifts a 64-bit integer right between 0 and 63 bits. This high bits are filled with zeros. The shifted value is returned.
This function shifts the 64-bit value Operand to the right by Count bits. The high Count bits are set to zero. The shifted value is returned.
If Count is greater than 63, then ASSERT().
Operand | The 64-bit operand to shift right. | |
Count | The number of bits to shift right. |
BOOLEAN EFIAPI SaveAndDisableInterrupts | ( | VOID | ) |
Disables CPU interrupts and returns the interrupt state prior to the disable operation.
TRUE | CPU interrupts were enabled on entry to this call. | |
FALSE | CPU interrupts were disabled on entry to this call. |
Set the current CPU interrupt state.
Sets the current CPU interrupt state to the state specified by InterruptState. If InterruptState is TRUE, then interrupts are enabled. If InterruptState is FALSE, then interrupts are disabled. InterruptState is returned.
InterruptState | TRUE if interrupts should enabled. FALSE if interrupts should be disabled. |
UINTN EFIAPI SetJump | ( | JumpBuffer | ) |
Saves the current CPU context that can be restored with a call to LongJump() and returns 0.
Saves the current CPU context in the buffer specified by JumpBuffer and returns 0. The initial call to SetJump() must always return 0. Subsequent calls to LongJump() cause a non-zero value to be returned by SetJump().
If JumpBuffer is NULL, then ASSERT(). For Itanium processors, if JumpBuffer is not aligned on a 16-byte boundary, then ASSERT().
JumpBuffer | A pointer to CPU context buffer. |
0 | Indicates a return from SetJump(). |
[ATTENTION] This function is deprecated for security reason.
Concatenates one Null-terminated Unicode string to another Null-terminated Unicode string, and returns the concatenated Unicode string.
This function concatenates two Null-terminated Unicode strings. The contents of Null-terminated Unicode string Source are concatenated to the end of Null-terminated Unicode string Destination. The Null-terminated concatenated Unicode String is returned. If Source and Destination overlap, then the results are undefined.
If Destination is NULL, then ASSERT(). If Destination is not aligned on a 16-bit boundary, then ASSERT(). If Source is NULL, then ASSERT(). If Source is not aligned on a 16-bit boundary, then ASSERT(). If Source and Destination overlap, then ASSERT(). If PcdMaximumUnicodeStringLength is not zero, and Destination contains more than PcdMaximumUnicodeStringLength Unicode characters, not including the Null-terminator, then ASSERT(). If PcdMaximumUnicodeStringLength is not zero, and Source contains more than PcdMaximumUnicodeStringLength Unicode characters, not including the Null-terminator, then ASSERT(). If PcdMaximumUnicodeStringLength is not zero, and concatenating Destination and Source results in a Unicode string with more than PcdMaximumUnicodeStringLength Unicode characters, not including the Null-terminator, then ASSERT().
Destination | The pointer to a Null-terminated Unicode string. | |
Source | The pointer to a Null-terminated Unicode string. |
RETURN_STATUS EFIAPI StrCatS | ( | IN OUT CHAR16 * | Destination, | |
IN UINTN | DestMax, | |||
IN CONST CHAR16 * | Source | |||
) |
Appends a copy of the string pointed to by Source (including the terminating null char) to the end of the string pointed to by Destination.
If Destination is not aligned on a 16-bit boundary, then ASSERT(). If Source is not aligned on a 16-bit boundary, then ASSERT(). If an error would be returned, then the function will also ASSERT().
Destination | A pointer to a Null-terminated Unicode string. | |
DestMax | The maximum number of Destination Unicode char, including terminating null char. | |
Source | A pointer to a Null-terminated Unicode string. |
RETURN_SUCCESS | String is appended. | |
RETURN_BAD_BUFFER_SIZE | If DestMax is NOT greater than StrLen(Destination). | |
RETURN_BUFFER_TOO_SMALL | If (DestMax - StrLen(Destination)) is NOT greater than StrLen(Source). | |
RETURN_INVALID_PARAMETER | If Destination is NULL. If Source is NULL. If PcdMaximumUnicodeStringLength is not zero, and DestMax is greater than PcdMaximumUnicodeStringLength. If DestMax is 0. | |
RETURN_ACCESS_DENIED | If Source and Destination overlap. |
Compares two Null-terminated Unicode strings, and returns the difference between the first mismatched Unicode characters.
This function compares the Null-terminated Unicode string FirstString to the Null-terminated Unicode string SecondString. If FirstString is identical to SecondString, then 0 is returned. Otherwise, the value returned is the first mismatched Unicode character in SecondString subtracted from the first mismatched Unicode character in FirstString.
If FirstString is NULL, then ASSERT(). If FirstString is not aligned on a 16-bit boundary, then ASSERT(). If SecondString is NULL, then ASSERT(). If SecondString is not aligned on a 16-bit boundary, then ASSERT(). If PcdMaximumUnicodeStringLength is not zero, and FirstString contains more than PcdMaximumUnicodeStringLength Unicode characters not including the Null-terminator, then ASSERT(). If PcdMaximumUnicodeStringLength is not zero, and SecondString contains more than PcdMaximumUnicodeStringLength Unicode characters, not including the Null-terminator, then ASSERT().
FirstString | The pointer to a Null-terminated Unicode string. | |
SecondString | The pointer to a Null-terminated Unicode string. |
0 | FirstString is identical to SecondString. |
[ATTENTION] This function is deprecated for security reason.
Copies one Null-terminated Unicode string to another Null-terminated Unicode string and returns the new Unicode string.
This function copies the contents of the Unicode string Source to the Unicode string Destination, and returns Destination. If Source and Destination overlap, then the results are undefined.
If Destination is NULL, then ASSERT(). If Destination is not aligned on a 16-bit boundary, then ASSERT(). If Source is NULL, then ASSERT(). If Source is not aligned on a 16-bit boundary, then ASSERT(). If Source and Destination overlap, then ASSERT(). If PcdMaximumUnicodeStringLength is not zero, and Source contains more than PcdMaximumUnicodeStringLength Unicode characters not including the Null-terminator, then ASSERT().
Destination | The pointer to a Null-terminated Unicode string. | |
Source | The pointer to a Null-terminated Unicode string. |
RETURN_STATUS EFIAPI StrCpyS | ( | OUT CHAR16 * | Destination, | |
IN UINTN | DestMax, | |||
IN CONST CHAR16 * | Source | |||
) |
Copies the string pointed to by Source (including the terminating null char) to the array pointed to by Destination.
If Destination is not aligned on a 16-bit boundary, then ASSERT(). If Source is not aligned on a 16-bit boundary, then ASSERT(). If an error would be returned, then the function will also ASSERT().
Destination | A pointer to a Null-terminated Unicode string. | |
DestMax | The maximum number of Destination Unicode char, including terminating null char. | |
Source | A pointer to a Null-terminated Unicode string. |
RETURN_SUCCESS | String is copied. | |
RETURN_BUFFER_TOO_SMALL | If DestMax is NOT greater than StrLen(Source). | |
RETURN_INVALID_PARAMETER | If Destination is NULL. If Source is NULL. If PcdMaximumUnicodeStringLength is not zero, and DestMax is greater than PcdMaximumUnicodeStringLength. If DestMax is 0. | |
RETURN_ACCESS_DENIED | If Source and Destination overlap. |
Convert a Null-terminated Unicode decimal string to a value of type UINT64.
This function returns a value of type UINT64 by interpreting the contents of the Unicode string specified by String as a decimal number. The format of the input Unicode string String is:
[spaces] [decimal digits].
The valid decimal digit character is in the range [0-9]. The function will ignore the pad space, which includes spaces or tab characters, before [decimal digits]. The running zero in the beginning of [decimal digits] will be ignored. Then, the function stops at the first character that is a not a valid decimal character or a Null-terminator, whichever one comes first.
If String is NULL, then ASSERT(). If String is not aligned in a 16-bit boundary, then ASSERT(). If String has only pad spaces, then 0 is returned. If String has no pad spaces or valid decimal digits, then 0 is returned. If the number represented by String overflows according to the range defined by UINT64, then ASSERT().
If PcdMaximumUnicodeStringLength is not zero, and String contains more than PcdMaximumUnicodeStringLength Unicode characters not including the Null-terminator, then ASSERT().
String | The pointer to a Null-terminated Unicode string. |
Value | translated from String. |
UINTN EFIAPI StrDecimalToUintn | ( | IN CONST CHAR16 * | String | ) |
Convert a Null-terminated Unicode decimal string to a value of type UINTN.
This function returns a value of type UINTN by interpreting the contents of the Unicode string specified by String as a decimal number. The format of the input Unicode string String is:
[spaces] [decimal digits].
The valid decimal digit character is in the range [0-9]. The function will ignore the pad space, which includes spaces or tab characters, before [decimal digits]. The running zero in the beginning of [decimal digits] will be ignored. Then, the function stops at the first character that is a not a valid decimal character or a Null-terminator, whichever one comes first.
If String is NULL, then ASSERT(). If String is not aligned in a 16-bit boundary, then ASSERT(). If String has only pad spaces, then 0 is returned. If String has no pad spaces or valid decimal digits, then 0 is returned. If the number represented by String overflows according to the range defined by UINTN, then ASSERT().
If PcdMaximumUnicodeStringLength is not zero, and String contains more than PcdMaximumUnicodeStringLength Unicode characters not including the Null-terminator, then ASSERT().
String | The pointer to a Null-terminated Unicode string. |
Value | translated from String. |
Convert a Null-terminated Unicode hexadecimal string to a value of type UINT64.
This function returns a value of type UINT64 by interpreting the contents of the Unicode string specified by String as a hexadecimal number. The format of the input Unicode string String is
[spaces][zeros][x][hexadecimal digits].
The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F]. The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. If "x" appears in the input string, it must be prefixed with at least one 0. The function will ignore the pad space, which includes spaces or tab characters, before [zeros], [x] or [hexadecimal digit]. The running zero before [x] or [hexadecimal digit] will be ignored. Then, the decoding starts after [x] or the first valid hexadecimal digit. Then, the function stops at the first character that is a not a valid hexadecimal character or NULL, whichever one comes first.
If String is NULL, then ASSERT(). If String is not aligned in a 16-bit boundary, then ASSERT(). If String has only pad spaces, then zero is returned. If String has no leading pad spaces, leading zeros or valid hexadecimal digits, then zero is returned. If the number represented by String overflows according to the range defined by UINT64, then ASSERT().
If PcdMaximumUnicodeStringLength is not zero, and String contains more than PcdMaximumUnicodeStringLength Unicode characters not including the Null-terminator, then ASSERT().
String | The pointer to a Null-terminated Unicode string. |
Value | translated from String. |
UINTN EFIAPI StrHexToUintn | ( | IN CONST CHAR16 * | String | ) |
Convert a Null-terminated Unicode hexadecimal string to a value of type UINTN.
This function returns a value of type UINTN by interpreting the contents of the Unicode string specified by String as a hexadecimal number. The format of the input Unicode string String is:
[spaces][zeros][x][hexadecimal digits].
The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F]. The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. If "x" appears in the input string, it must be prefixed with at least one 0. The function will ignore the pad space, which includes spaces or tab characters, before [zeros], [x] or [hexadecimal digit]. The running zero before [x] or [hexadecimal digit] will be ignored. Then, the decoding starts after [x] or the first valid hexadecimal digit. Then, the function stops at the first character that is a not a valid hexadecimal character or NULL, whichever one comes first.
If String is NULL, then ASSERT(). If String is not aligned in a 16-bit boundary, then ASSERT(). If String has only pad spaces, then zero is returned. If String has no leading pad spaces, leading zeros or valid hexadecimal digits, then zero is returned. If the number represented by String overflows according to the range defined by UINTN, then ASSERT().
If PcdMaximumUnicodeStringLength is not zero, and String contains more than PcdMaximumUnicodeStringLength Unicode characters not including the Null-terminator, then ASSERT().
String | The pointer to a Null-terminated Unicode string. |
Value | translated from String. |
UINTN EFIAPI StrLen | ( | IN CONST CHAR16 * | String | ) |
Returns the length of a Null-terminated Unicode string.
This function returns the number of Unicode characters in the Null-terminated Unicode string specified by String.
If String is NULL, then ASSERT(). If String is not aligned on a 16-bit boundary, then ASSERT(). If PcdMaximumUnicodeStringLength is not zero, and String contains more than PcdMaximumUnicodeStringLength Unicode characters not including the Null-terminator, then ASSERT().
String | Pointer to a Null-terminated Unicode string. |
[ATTENTION] This function is deprecated for security reason.
Concatenates up to a specified length one Null-terminated Unicode to the end of another Null-terminated Unicode string, and returns the concatenated Unicode string.
This function concatenates two Null-terminated Unicode strings. The contents of Null-terminated Unicode string Source are concatenated to the end of Null-terminated Unicode string Destination, and Destination is returned. At most, Length Unicode characters are concatenated from Source to the end of Destination, and Destination is always Null-terminated. If Length is 0, then Destination is returned unmodified. If Source and Destination overlap, then the results are undefined.
If Destination is NULL, then ASSERT(). If Length > 0 and Destination is not aligned on a 16-bit boundary, then ASSERT(). If Length > 0 and Source is NULL, then ASSERT(). If Length > 0 and Source is not aligned on a 16-bit boundary, then ASSERT(). If Source and Destination overlap, then ASSERT(). If PcdMaximumUnicodeStringLength is not zero, and Length is greater than PcdMaximumUnicodeStringLength, then ASSERT(). If PcdMaximumUnicodeStringLength is not zero, and Destination contains more than PcdMaximumUnicodeStringLength Unicode characters, not including the Null-terminator, then ASSERT(). If PcdMaximumUnicodeStringLength is not zero, and Source contains more than PcdMaximumUnicodeStringLength Unicode characters, not including the Null-terminator, then ASSERT(). If PcdMaximumUnicodeStringLength is not zero, and concatenating Destination and Source results in a Unicode string with more than PcdMaximumUnicodeStringLength Unicode characters, not including the Null-terminator, then ASSERT().
Destination | The pointer to a Null-terminated Unicode string. | |
Source | The pointer to a Null-terminated Unicode string. | |
Length | The maximum number of Unicode characters to concatenate from Source. |
RETURN_STATUS EFIAPI StrnCatS | ( | IN OUT CHAR16 * | Destination, | |
IN UINTN | DestMax, | |||
IN CONST CHAR16 * | Source, | |||
IN UINTN | Length | |||
) |
Appends not more than Length successive char from the string pointed to by Source to the end of the string pointed to by Destination. If no null char is copied from Source, then Destination[StrLen(Destination) + Length] is always set to null.
If Destination is not aligned on a 16-bit boundary, then ASSERT(). If Source is not aligned on a 16-bit boundary, then ASSERT(). If an error would be returned, then the function will also ASSERT().
Destination | A pointer to a Null-terminated Unicode string. | |
DestMax | The maximum number of Destination Unicode char, including terminating null char. | |
Source | A pointer to a Null-terminated Unicode string. | |
Length | The maximum number of Unicode characters to copy. |
RETURN_SUCCESS | String is appended. | |
RETURN_BAD_BUFFER_SIZE | If DestMax is NOT greater than StrLen(Destination). | |
RETURN_BUFFER_TOO_SMALL | If (DestMax - StrLen(Destination)) is NOT greater than MIN(StrLen(Source), Length). | |
RETURN_INVALID_PARAMETER | If Destination is NULL. If Source is NULL. If PcdMaximumUnicodeStringLength is not zero, and DestMax is greater than PcdMaximumUnicodeStringLength. If DestMax is 0. | |
RETURN_ACCESS_DENIED | If Source and Destination overlap. |
INTN EFIAPI StrnCmp | ( | IN CONST CHAR16 * | FirstString, | |
IN CONST CHAR16 * | SecondString, | |||
IN UINTN | Length | |||
) |
Compares up to a specified length the contents of two Null-terminated Unicode strings, and returns the difference between the first mismatched Unicode characters.
This function compares the Null-terminated Unicode string FirstString to the Null-terminated Unicode string SecondString. At most, Length Unicode characters will be compared. If Length is 0, then 0 is returned. If FirstString is identical to SecondString, then 0 is returned. Otherwise, the value returned is the first mismatched Unicode character in SecondString subtracted from the first mismatched Unicode character in FirstString.
If Length > 0 and FirstString is NULL, then ASSERT(). If Length > 0 and FirstString is not aligned on a 16-bit boundary, then ASSERT(). If Length > 0 and SecondString is NULL, then ASSERT(). If Length > 0 and SecondString is not aligned on a 16-bit boundary, then ASSERT(). If PcdMaximumUnicodeStringLength is not zero, and Length is greater than PcdMaximumUnicodeStringLength, then ASSERT(). If PcdMaximumUnicodeStringLength is not zero, and FirstString contains more than PcdMaximumUnicodeStringLength Unicode characters, not including the Null-terminator, then ASSERT(). If PcdMaximumUnicodeStringLength is not zero, and SecondString contains more than PcdMaximumUnicodeStringLength Unicode characters, not including the Null-terminator, then ASSERT().
FirstString | The pointer to a Null-terminated Unicode string. | |
SecondString | The pointer to a Null-terminated Unicode string. | |
Length | The maximum number of Unicode characters to compare. |
0 | FirstString is identical to SecondString. |
[ATTENTION] This function is deprecated for security reason.
Copies up to a specified length from one Null-terminated Unicode string to another Null-terminated Unicode string and returns the new Unicode string.
This function copies the contents of the Unicode string Source to the Unicode string Destination, and returns Destination. At most, Length Unicode characters are copied from Source to Destination. If Length is 0, then Destination is returned unmodified. If Length is greater that the number of Unicode characters in Source, then Destination is padded with Null Unicode characters. If Source and Destination overlap, then the results are undefined.
If Length > 0 and Destination is NULL, then ASSERT(). If Length > 0 and Destination is not aligned on a 16-bit boundary, then ASSERT(). If Length > 0 and Source is NULL, then ASSERT(). If Length > 0 and Source is not aligned on a 16-bit boundary, then ASSERT(). If Source and Destination overlap, then ASSERT(). If PcdMaximumUnicodeStringLength is not zero, and Length is greater than PcdMaximumUnicodeStringLength, then ASSERT(). If PcdMaximumUnicodeStringLength is not zero, and Source contains more than PcdMaximumUnicodeStringLength Unicode characters, not including the Null-terminator, then ASSERT().
Destination | The pointer to a Null-terminated Unicode string. | |
Source | The pointer to a Null-terminated Unicode string. | |
Length | The maximum number of Unicode characters to copy. |
RETURN_STATUS EFIAPI StrnCpyS | ( | OUT CHAR16 * | Destination, | |
IN UINTN | DestMax, | |||
IN CONST CHAR16 * | Source, | |||
IN UINTN | Length | |||
) |
Copies not more than Length successive char from the string pointed to by Source to the array pointed to by Destination. If no null char is copied from Source, then Destination[Length] is always set to null.
If Length > 0 and Destination is not aligned on a 16-bit boundary, then ASSERT(). If Length > 0 and Source is not aligned on a 16-bit boundary, then ASSERT(). If an error would be returned, then the function will also ASSERT().
Destination | A pointer to a Null-terminated Unicode string. | |
DestMax | The maximum number of Destination Unicode char, including terminating null char. | |
Source | A pointer to a Null-terminated Unicode string. | |
Length | The maximum number of Unicode characters to copy. |
RETURN_SUCCESS | String is copied. | |
RETURN_BUFFER_TOO_SMALL | If DestMax is NOT greater than MIN(StrLen(Source), Length). | |
RETURN_INVALID_PARAMETER | If Destination is NULL. If Source is NULL. If PcdMaximumUnicodeStringLength is not zero, and DestMax is greater than PcdMaximumUnicodeStringLength. If DestMax is 0. | |
RETURN_ACCESS_DENIED | If Source and Destination overlap. |
UINTN EFIAPI StrnLenS | ( | IN CONST CHAR16 * | String, | |
IN UINTN | MaxSize | |||
) |
Returns the length of a Null-terminated Unicode string.
If String is not aligned on a 16-bit boundary, then ASSERT().
String | A pointer to a Null-terminated Unicode string. | |
MaxSize | The maximum number of Destination Unicode char, including terminating null char. |
0 | If String is NULL. | |
MaxSize | If there is no null character in the first MaxSize characters of String. |
UINTN EFIAPI StrSize | ( | IN CONST CHAR16 * | String | ) |
Returns the size of a Null-terminated Unicode string in bytes, including the Null terminator.
This function returns the size, in bytes, of the Null-terminated Unicode string specified by String.
If String is NULL, then ASSERT(). If String is not aligned on a 16-bit boundary, then ASSERT(). If PcdMaximumUnicodeStringLength is not zero, and String contains more than PcdMaximumUnicodeStringLength Unicode characters not including the Null-terminator, then ASSERT().
String | The pointer to a Null-terminated Unicode string. |
Returns the first occurrence of a Null-terminated Unicode sub-string in a Null-terminated Unicode string.
This function scans the contents of the Null-terminated Unicode string specified by String and returns the first occurrence of SearchString. If SearchString is not found in String, then NULL is returned. If the length of SearchString is zero, then String is returned.
If String is NULL, then ASSERT(). If String is not aligned on a 16-bit boundary, then ASSERT(). If SearchString is NULL, then ASSERT(). If SearchString is not aligned on a 16-bit boundary, then ASSERT().
If PcdMaximumUnicodeStringLength is not zero, and SearchString or String contains more than PcdMaximumUnicodeStringLength Unicode characters, not including the Null-terminator, then ASSERT().
String | The pointer to a Null-terminated Unicode string. | |
SearchString | The pointer to a Null-terminated Unicode string to search for. |
NULL | If the SearchString does not appear in String. |
Switches the endianness of a 16-bit integer.
This function swaps the bytes in a 16-bit unsigned value to switch the value from little endian to big endian or vice versa. The byte swapped value is returned.
Value | A 16-bit unsigned value. |
Switches the endianness of a 32-bit integer.
This function swaps the bytes in a 32-bit unsigned value to switch the value from little endian to big endian or vice versa. The byte swapped value is returned.
Value | A 32-bit unsigned value. |
Switches the endianness of a 64-bit integer.
This function swaps the bytes in a 64-bit unsigned value to switch the value from little endian to big endian or vice versa. The byte swapped value is returned.
Value | A 64-bit unsigned value. |
LIST_ENTRY* EFIAPI SwapListEntries | ( | IN OUT LIST_ENTRY * | FirstEntry, | |
IN OUT LIST_ENTRY * | SecondEntry | |||
) |
Swaps the location of two nodes in a doubly linked list, and returns the first node after the swap.
If FirstEntry is identical to SecondEntry, then SecondEntry is returned. Otherwise, the location of the FirstEntry node is swapped with the location of the SecondEntry node in a doubly linked list. SecondEntry must be in the same double linked list as FirstEntry and that double linked list must have been initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead(). SecondEntry is returned after the nodes are swapped.
If FirstEntry is NULL, then ASSERT(). If SecondEntry is NULL, then ASSERT(). If PcdVerifyNodeInList is TRUE and SecondEntry and FirstEntry are not in the same linked list, then ASSERT(). If PcdMaximumLinkedListLength is not zero, and the number of nodes in the linked list containing the FirstEntry and SecondEntry nodes, including the FirstEntry and SecondEntry nodes, is greater than or equal to PcdMaximumLinkedListLength, then ASSERT().
FirstEntry | A pointer to a node in a linked list. | |
SecondEntry | A pointer to another node in the same linked list. |
VOID EFIAPI SwitchStack | ( | IN SWITCH_STACK_ENTRY_POINT | EntryPoint, | |
IN VOID * | Context1, | |||
IN VOID * | Context2, | |||
IN VOID * | NewStack, | |||
... | ||||
) |
Transfers control to a function starting with a new stack.
Transfers control to the function specified by EntryPoint using the new stack specified by NewStack and passing in the parameters specified by Context1 and Context2. Context1 and Context2 are optional and may be NULL. The function EntryPoint must never return. This function supports a variable number of arguments following the NewStack parameter. These additional arguments are ignored on IA-32, x64, and EBC architectures. Itanium processors expect one additional parameter of type VOID * that specifies the new backing store pointer.
If EntryPoint is NULL, then ASSERT(). If NewStack is NULL, then ASSERT().
EntryPoint | A pointer to function to call with the new stack. | |
Context1 | A pointer to the context to pass into the EntryPoint function. | |
Context2 | A pointer to the context to pass into the EntryPoint function. | |
NewStack | A pointer to the new stack to use for the EntryPoint function. | |
... | This variable argument list is ignored for IA-32, x64, and EBC architectures. For Itanium processors, this variable argument list is expected to contain a single parameter of type VOID * that specifies the new backing store pointer. |
Convert a Null-terminated Unicode string to a Null-terminated ASCII string and returns the ASCII string.
This function converts the content of the Unicode string Source to the ASCII string Destination by copying the lower 8 bits of each Unicode character. It returns Destination.
The caller is responsible to make sure Destination points to a buffer with size equal or greater than ((StrLen (Source) + 1) * sizeof (CHAR8)) in bytes.
If any Unicode characters in Source contain non-zero value in the upper 8 bits, then ASSERT().
If Destination is NULL, then ASSERT(). If Source is NULL, then ASSERT(). If Source is not aligned on a 16-bit boundary, then ASSERT(). If Source and Destination overlap, then ASSERT().
If PcdMaximumUnicodeStringLength is not zero, and Source contains more than PcdMaximumUnicodeStringLength Unicode characters not including the Null-terminator, then ASSERT().
If PcdMaximumAsciiStringLength is not zero, and Source contains more than PcdMaximumAsciiStringLength Unicode characters not including the Null-terminator, then ASSERT().
Source | The pointer to a Null-terminated Unicode string. | |
Destination | The pointer to a Null-terminated ASCII string. |
Writes a 16-bit value to memory that may be unaligned.
This function writes the 16-bit value specified by Value to Buffer. Value is returned. The function guarantees that the write operation does not produce an alignment fault.
If the Buffer is NULL, then ASSERT().
Buffer | The pointer to a 16-bit value that may be unaligned. | |
Value | 16-bit value to write to Buffer. |
Writes a 24-bit value to memory that may be unaligned.
This function writes the 24-bit value specified by Value to Buffer. Value is returned. The function guarantees that the write operation does not produce an alignment fault.
If the Buffer is NULL, then ASSERT().
Buffer | The pointer to a 24-bit value that may be unaligned. | |
Value | 24-bit value to write to Buffer. |
Writes a 32-bit value to memory that may be unaligned.
This function writes the 32-bit value specified by Value to Buffer. Value is returned. The function guarantees that the write operation does not produce an alignment fault.
If the Buffer is NULL, then ASSERT().
Buffer | The pointer to a 32-bit value that may be unaligned. | |
Value | 32-bit value to write to Buffer. |
Writes a 64-bit value to memory that may be unaligned.
This function writes the 64-bit value specified by Value to Buffer. Value is returned. The function guarantees that the write operation does not produce an alignment fault.
If the Buffer is NULL, then ASSERT().
Buffer | The pointer to a 64-bit value that may be unaligned. | |
Value | 64-bit value to write to Buffer. |